Kyoko Fukazawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637824/publications.pdf

Version: 2024-02-01

471509 526287 44 767 17 27 citations h-index g-index papers 45 45 45 886 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The unique hydration state of poly(2-methacryloyloxyethyl phosphorylcholine). Journal of Biomaterials Science, Polymer Edition, 2017, 28, 884-899.	3.5	103
2	Photoreactive Polymers Bearing a Zwitterionic Phosphorylcholine Group for Surface Modification of Biomaterials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 17489-17498.	8.0	75
3	Fabrication of a cell-adhesive protein imprinting surface with an artificial cell membrane structure for cell capturing. Biosensors and Bioelectronics, 2009, 25, 609-614.	10.1	44
4	Mechanical force-based probing of intracellular proteins from living cells using antibody-immobilized nanoneedles. Biosensors and Bioelectronics, 2012, 31, 323-329.	10.1	39
5	Evaluation of the actin cytoskeleton state using an antibody-functionalized nanoneedle and an AFM. Biosensors and Bioelectronics, 2013, 40, 3-9.	10.1	34
6	Synthesis of Photoreactive Phospholipid Polymers for Use in Versatile Surface Modification of Various Materials to Obtain Extreme Wettability. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6832-6836.	8.0	33
7	Antifouling Silicone Hydrogel Contact Lenses with a Bioinspired 2-Methacryloyloxyethyl Phosphorylcholine Polymer Surface. ACS Omega, 2021, 6, 7058-7067.	3.5	33
8	Effects of 3,4-dihydrophenyl groups in water-soluble phospholipid polymer on stable surface modification of titanium alloy. Colloids and Surfaces B: Biointerfaces, 2011, 88, 215-220.	5.0	29
9	Photoreactive Initiator for Surface-Initiated ATRP on Versatile Polymeric Substrates. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24994-24998.	8.0	29
10	Direct observation of selective protein capturing on molecular imprinting substrates. Biosensors and Bioelectronics, 2013, 40, 96-101.	10.1	27
11	Surface characterization of a silicone hydrogel contact lens having bioinspired 2-methacryloyloxyethyl phosphorylcholine polymer layer in hydrated state. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111539.	5.0	26
12	Effects of molecular interactions at various polymer brush surfaces on fibronectin adsorption induced cell adhesion. Colloids and Surfaces B: Biointerfaces, 2020, 194, 111205.	5.0	22
13	Shortâ€ŧerm evaluation of thromboresistance of a poly(ether ether ketone) (PEEK) mechanical heart valve with poly(2â€methacryloyloxyethyl phosphorylcholine) (PMPC)â€grafted surface in a porcine aortic valve replacement model. Journal of Biomedical Materials Research - Part A, 2019, 107, 1052-1063.	4.0	21
14	In situ surface modification on dental composite resin using 2-methacryloyloxyethyl phosphorylcholine polymer for controlling plaque formation. Materials Science and Engineering C, 2019, 104, 109916.	7.3	19
15	CHAPTER 5. 2-Methacryloyloxyethyl Phosphorylcholine Polymers. RSC Polymer Chemistry Series, 2014, , 68-96.	0.2	18
16	Label-Free Separation of Induced Pluripotent Stem Cells with Anti-SSEA-1 Antibody Immobilized Microfluidic Channel. Langmuir, 2017, 33, 1576-1582.	3.5	18
17	Detection of microtubules in vivo using antibody-immobilized nanoneedles. Journal of Bioscience and Bioengineering, 2014, 117, 107-112.	2.2	17
18	Simple surface treatment using amphiphilic phospholipid polymers to obtain wetting and lubricity on polydimethylsiloxane-based substrates. Colloids and Surfaces B: Biointerfaces, 2012, 97, 70-76.	5.0	16

#	Article	IF	CITATIONS
19	Photoinduced Surface Zwitterionization for Antifouling of Porous Polymer Substrates. Langmuir, 2019, 35, 1312-1319.	3.5	16
20	2-Methacryloyloxyethyl Phosphorylcholine Polymer Coating Inhibits Bacterial Adhesion and Biofilm Formation on a Suture: An In Vitro and In Vivo Study. BioMed Research International, 2020, 2020, 1-8.	1.9	15
21	Nanoscaled Morphology and Mechanical Properties of a Biomimetic Polymer Surface on a Silicone Hydrogel Contact Lens. Langmuir, 2021, 37, 13961-13967.	3.5	14
22	Nanoneedle Surface Modification with 2-Methacryloyloxyethyl Phosphorylcholine Polymer to Reduce Nonspecific Protein Adsorption in a Living Cell. Nanobiotechnology, 2007, 3, 127-134.	1.2	12
23	Animal Experiments of the Helical Flow Total Artificial Heart. Artificial Organs, 2015, 39, 670-680.	1.9	12
24	Photoinduced inhibition of DNA unwinding in vitro with water-soluble polymers containing both phosphorylcholine and photoreactive groups. Acta Biomaterialia, 2016, 40, 226-234.	8.3	11
25	Antibacterial effect of nanometerâ€size grafted layer of quaternary ammonium polymer on poly(ether) Tj ETQq	1 1 0.7843 2.6	14 rgBT /Ove
26	Photoinduced self-initiated graft polymerization of methacrylate monomers on poly(ether ether) Tj ETQq0 0 0 0 731-741.	rgBT /Overl 2.7	ock 10 Tf 50 4 8
27	Cell-membrane-inspired polymers for constructing biointerfaces with efficient molecular recognition. Journal of Materials Chemistry B, 2022, 10, 3397-3419.	5. 8	8
28	Reliable surface modification of dental plastic substrates to reduce biofouling with a photoreactive phospholipid polymer. Journal of Applied Polymer Science, 2018, 135, 46512.	2.6	7
29	Biomimetic phospholipid polymers for suppressing adsorption of saliva proteins on dental hydroxyapatite substrate. Journal of Applied Polymer Science, 2021, 138, 49812.	2.6	7
30	ATP-mediated Release of a DNA-binding Protein from a Silicon Nanoneedle Array. Electrochemistry, 2016, 84, 305-307.	1.4	6
31	Direct photoreactive immobilization of water-soluble phospholipid polymers on substrates in an aqueous environment. Colloids and Surfaces B: Biointerfaces, 2021, 199, 111507.	5.0	5
32	Control of Cellâ€Substrate Binding Related to Cell Proliferation Cycle Status Using a Cytocompatible Phospholipid Polymer Bearing Phenylboronic Acid Groups. Macromolecular Bioscience, 2021, 21, 2000341.	4.1	5
33	Interface of Phospholipid Polymer Grafting Layers to Analyze Functions of Immobilized Oligopeptides Involved in Cell Adhesion. ACS Biomaterials Science and Engineering, 2020, 6, 3984-3993.	5. 2	5
34	Water-Soluble and Cytocompatible Phospholipid Polymers for Molecular Complexation to Enhance Biomolecule Transportation to Cells In Vitro. Polymers, 2020, 12, 1762.	4.5	4
35	Combination of two antithrombogenic methodologies for preventing thrombus formation on a poly(ether ether ketone) substrate. Colloids and Surfaces B: Biointerfaces, 2020, 192, 111021.	5.0	4
36	Effects of molecular architecture of photoreactive phospholipid polymer on adsorption and reaction on substrate surface under aqueous condition. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 419-437.	3.5	4

#	Article	IF	CITATIONS
37	Phospholipid Polymer Hydrogel Matrices with Dually Immobilized Cytokines for Accelerating Secretion of the Extracellular Matrix by Encapsulated Cells. Macromolecular Bioscience, 2020, 20, 2000114.	4.1	3
38	Induction of mesenchymal stem cell differentiation by co-culturing with mature cells in double-layered 2-methacryloyloxyethyl phosphorylcholine polymer hydrogel matrices. Journal of Materials Chemistry B, 2021, , .	5.8	3
39	Photoinduced immobilization of 2-methacryloyloxyethyl phosphorylcholine polymers with different molecular architectures on a poly(ether ether ketone) surface. Journal of Materials Chemistry B, 2022, , .	5.8	3
40	Bioinspired phospholipid polymer for improvement of biofouling on titanium alloy substrate. Transactions of the Materials Research Society of Japan, 2011, 36, 573-576.	0.2	1
41	Preparation of Magnetic Hydrogel Microparticles with Cationic Surfaces and Their Cell-Assembling Performance. ACS Biomaterials Science and Engineering, 2021, 7, 5107-5117.	5.2	1
42	1P321 Surface modification of nanoneedle with MPC polymers for improving the biocompatibility with cell interior (Bioengineering, Poster Presentations). Seibutsu Butsuri, 2007, 47, S103.	0.1	0
43	1H23 Isolation of undifferentiated iPS cells using microfluidic channel immobilized with anti-SSEA-1 antibody. The Proceedings of the Bioengineering Conference Annual Meeting of BED/JSME, 2016, 2016.28, _1H23-11H23-4	0.0	0
44	Control of Biological Response by Artificial Cell Membrane Surface and Application to Membrane Science. Membrane, 2020, 45, 232-239.	0.0	0