
Thomas J Carroll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6378057/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Deletion of Lats1/2 in adult kidney epithelia leads to renal cell carcinoma. Journal of Clinical Investigation, 2021, 131, .	8.2	12
2	Vascular deficiencies in renal organoids and ex vivo kidney organogenesis. Developmental Biology, 2021, 477, 98-116.	2.0	23
3	Asynchronous mixing of kidney progenitor cells potentiates nephrogenesis in organoids. Communications Biology, 2020, 3, 231.	4.4	24
4	Stromal beta-catenin activation impacts nephron progenitor differentiation in the developing kidney and may contribute to Wilms tumor. Development (Cambridge), 2020, 147, .	2.5	16
5	Identification and characterization of cellular heterogeneity within the developing renal interstitium. Development (Cambridge), 2020, 147, .	2.5	59
6	Schwannoma development is mediated by Hippo pathway dysregulation and modified by RAS/MAPK signaling. JCI Insight, 2020, 5, .	5.0	14
7	Methods for renal lineage tracing: In vivo and beyond. Methods in Cell Biology, 2019, 154, 121-143.	1.1	1
8	LATS1/2 suppress NFκB and aberrant EMT initiation to permit pancreatic progenitor differentiation. PLoS Biology, 2019, 17, e3000382.	5.6	21
9	Molecular determinants of WNT9b responsiveness in nephron progenitor cells. PLoS ONE, 2019, 14, e0215139.	2.5	15
10	Spatiotemporal Loss of <i>NF1</i> in Schwann Cell Lineage Leads to Different Types of Cutaneous Neurofibroma Susceptible to Modification by the Hippo Pathway. Cancer Discovery, 2019, 9, 114-129.	9.4	65
11	Lkb1 deficiency confers glutamine dependency in polycystic kidney disease. Nature Communications, 2018, 9, 814.	12.8	55
12	Spatiotemporal heterogeneity and patterning of developing renal blood vessels. Angiogenesis, 2018, 21, 617-634.	7.2	55
13	Programming of Schwann Cells by Lats1/2-TAZ/YAP Signaling Drives Malignant Peripheral Nerve Sheath Tumorigenesis. Cancer Cell, 2018, 33, 292-308.e7.	16.8	83
14	Disparate levels of beta-catenin activity determine nephron progenitor cell fate. Developmental Biology, 2018, 440, 13-21.	2.0	33
15	Loss of <i>Dis3l2</i> partially phenocopies Perlman syndrome in mice and results in up-regulation of <i>lgf2</i> in nephron progenitor cells. Genes and Development, 2018, 32, 903-908.	5.9	34
16	MYC activation cooperates with Vhl and Ink4a/Arf loss to induce clear cell renal cell carcinoma. Nature Communications, 2017, 8, 15770.	12.8	64
17	Myc cooperates with beta-catenin to drive gene expression in the nephron progenitor cells. Development (Cambridge), 2017, 144, 4173-4182.	2.5	24
18	Talin regulates integrin β1 dependent and independent cell functions in ureteric bud development. Development (Cambridge), 2017, 144, 4148-4158.	2.5	8

THOMAS J CARROLL

#	Article	IF	CITATIONS
19	Hemodynamic Forces Sculpt Developing Heart Valves through a KLF2-WNT9B Paracrine Signaling Axis. Developmental Cell, 2017, 43, 274-289.e5.	7.0	114
20	Planar cell polarity of the kidney. Experimental Cell Research, 2016, 343, 258-266.	2.6	20
21	A Creâ€inducible fluorescent reporter for observing apical membrane dynamics. Genesis, 2015, 53, 285-293.	1.6	7
22	p53 enables metabolic fitness and self-renewal of nephron progenitor cells. Development (Cambridge), 2015, 142, 1228-1241.	2.5	30
23	Wnt4 is essential to normal mammalian lung development. Developmental Biology, 2015, 406, 222-234.	2.0	58
24	Cdc42 regulates epithelial cell polarity and cytoskeletal function in kidney tubule development. Journal of Cell Science, 2015, 128, 4293-305.	2.0	39
25	<i>Bap1</i> is essential for kidney function and cooperates with <i>Vhl</i> in renal tumorigenesis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16538-16543.	7.1	123
26	Generation and characterization of KsprtTA and KsptTA transgenic mice. Genesis, 2013, 51, 430-435.	1.6	9
27	The Development of Highly Potent Inhibitors for Porcupine. Journal of Medicinal Chemistry, 2013, 56, 2700-2704.	6.4	94
28	Defining the Signals that Constitute the Nephron Progenitor Niche. Journal of the American Society of Nephrology: JASN, 2013, 24, 873-876.	6.1	32
29	Polycystin-1 binds Par3/aPKC and controls convergent extension during renal tubular morphogenesis. Nature Communications, 2013, 4, 2658.	12.8	48
30	Stromal–epithelial crosstalk regulates kidney progenitor cell differentiation. Nature Cell Biology, 2013, 15, 1035-1044.	10.3	209
31	Vertebrate kidney tubules elongate using a planar cell polarity–dependent, rosette-based mechanism of convergent extension. Nature Genetics, 2012, 44, 1382-1387.	21.4	197
32	Diverse Chemical Scaffolds Support Direct Inhibition of the Membrane-bound O-Acyltransferase Porcupine. Journal of Biological Chemistry, 2012, 287, 23246-23254.	3.4	72
33	The Kidney and Planar Cell Polarity. Current Topics in Developmental Biology, 2012, 101, 185-212.	2.2	34
34	PCP goes organic. Organogenesis, 2011, 7, 163-164.	1.2	0
35	Canonical Wnt9b signaling balances progenitor cell expansion and differentiation during kidney development. Development (Cambridge), 2011, 138, 1247-1257.	2.5	254
36	The Leucine Zipper Putative Tumor Suppressor 2 Protein LZTS2 Regulates Kidney Development. Journal of Biological Chemistry, 2011, 286, 40331-40342.	3.4	15

THOMAS J CARROLL

#	Article	IF	CITATIONS
37	Planar cell polarity in kidney development and disease. Organogenesis, 2011, 7, 180-190.	1.2	26
38	Tankyrase is necessary for canonical Wnt signaling during kidney development. Developmental Dynamics, 2010, 239, 2014-2023.	1.8	38
39	Lrp4 Regulates Initiation of Ureteric Budding and Is Crucial for Kidney Formation – A Mouse Model for Cenani-Lenz Syndrome. PLoS ONE, 2010, 5, e10418.	2.5	54
40	Aberrant planar cell polarity induced by urinary tract obstruction. American Journal of Physiology - Renal Physiology, 2009, 297, F1526-F1533.	2.7	18
41	Wnt9b signaling regulates planar cell polarity and kidney tubule morphogenesis. Nature Genetics, 2009, 41, 793-799.	21.4	313
42	A <i>Wnt7b</i> -dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development (Cambridge), 2009, 136, 161-171.	2.5	205
43	β-Catenin is necessary to keep cells of ureteric bud/Wolffian duct epithelium in a precursor state. Developmental Biology, 2008, 314, 112-126.	2.0	138
44	Six2 Defines and Regulates a Multipotent Self-Renewing Nephron Progenitor Population throughout Mammalian Kidney Development. Cell Stem Cell, 2008, 3, 169-181.	11.1	815
45	Wnt7b stimulates embryonic lung growth by coordinately increasing the replication of epithelium and mesenchyme. Development (Cambridge), 2008, 135, 1625-1634.	2.5	147
46	Gata3 Acts Downstream of β-Catenin Signaling to Prevent Ectopic Metanephric Kidney Induction. PLoS Genetics, 2008, 4, e1000316.	3.5	126
47	Noncanonical Wnt Signaling through G Protein-Linked PKCĨ´Activation Promotes Bone Formation. Developmental Cell, 2007, 12, 113-127.	7.0	286
48	Molecular regulation of kidney development: is the answer blowing in the Wnt?. Pediatric Nephrology, 2007, 22, 1825-1838.	1.7	75
49	The Role of Wnt9b in Epithelial Tubule Induction and Differentiation. FASEB Journal, 2007, 21, A136.	O.5	Ο
50	Planar cell polarity and vertebrate organogenesis. Seminars in Cell and Developmental Biology, 2006, 17, 194-203.	5.0	81
51	Apical–basal polarity, Wnt signaling and vertebrate organogenesis. Seminars in Cell and Developmental Biology, 2006, 17, 214-222.	5.0	51
52	Distinct and sequential tissue-specific activities of the LIM-class homeobox gene <i>Lim1</i> for tubular morphogenesis during kidney development. Development (Cambridge), 2005, 132, 2809-2823.	2.5	307
53	Sprouty1 Is a Critical Regulator of GDNF/RET-Mediated Kidney Induction. Developmental Cell, 2005, 8, 229-239.	7.0	327
54	Wnt9b Plays a Central Role in the Regulation of Mesenchymal to Epithelial Transitions Underlying Organogenesis of the Mammalian Urogenital System. Developmental Cell, 2005, 9, 283-292.	7.0	788

#	Article	IF	CITATIONS
55	Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development (Cambridge), 2002, 129, 5301-5312.	2.5	377
56	Sonic hedgehog regulates proliferation and differentiation of mesenchymal cells in the mouse metanephric kidney. Development (Cambridge), 2002, 129, 5301-12.	2.5	216