
Michelina Ruocco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6377987/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology, 2015, 16, 413-434.	2.0	695
2	Trichoderma-based Products and their Widespread Use in Agriculture. The Open Mycology Journal, 2014, 8, 71-126.	0.8	451
3	The beneficial effect of <i>Trichoderma</i> spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 2011, 12, 341-354.	2.0	304
4	The Molecular Biology of the Interactions Between Trichoderma spp., Phytopathogenic Fungi, and Plants. Phytopathology, 2006, 96, 181-185.	1.1	301
5	Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Current Genetics, 2006, 50, 307-321.	0.8	247
6	Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biological Control, 2011, 57, 1-12.	1.4	189
7	Trichoderma Secondary Metabolites Active on Plants and Fungal Pathogens. The Open Mycology Journal, 2014, 8, 127-139.	0.8	188
8	Root Exudates of Stressed Plants Stimulate and Attract <i>Trichoderma</i> Soil Fungi. Molecular Plant-Microbe Interactions, 2018, 31, 982-994.	1.4	147
9	Identification of a New Biocontrol Gene in <i>Trichoderma atroviride</i> : The Role of an ABC Transporter Membrane Pump in the Interaction with Different Plant-Pathogenic Fungi. Molecular Plant-Microbe Interactions, 2009, 22, 291-301.	1.4	139
10	Harzianic acid: a novel siderophore from <i>Trichoderma harzianum</i> . FEMS Microbiology Letters, 2013, 347, n/a-n/a.	0.7	139
11	Trichoderma and its secondary metabolites improve yield and quality of grapes. Crop Protection, 2017, 92, 176-181.	1.0	135
12	Transcriptome reprogramming, epigenetic modifications and alternative splicing orchestrate the tomato root response to the beneficial fungus Trichoderma harzianum. Horticulture Research, 2019, 6, 5.	2.9	113
13	Tomato Below Ground–Above Ground Interactions: <i>Trichoderma longibrachiatum</i> Affects the Performance of <i>Macrosiphum euphorbiae</i> and Its Natural Antagonists. Molecular Plant-Microbe Interactions, 2013, 26, 1249-1256.	1.4	103
14	Multiple Roles and Effects of a Novel <i>Trichoderma</i> Hydrophobin. Molecular Plant-Microbe Interactions, 2015, 28, 167-179.	1.4	100
15	Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Marine Environmental Research, 2014, 101, 225-236.	1.1	93
16	A Novel Fungal Metabolite with Beneficial Properties for Agricultural Applications. Molecules, 2014, 19, 9760-9772.	1.7	89
17	<i>Trichoderma</i> Secondary Metabolites that Affect Plant Metabolism. Natural Product Communications, 2012, 7, 1934578X1200701.	0.2	67
18	Genetic variability and evolutionary diversification of membrane ABC transporters in plants. BMC Plant Biology, 2015, 15, 51.	1.6	66

MICHELINA RUOCCO

#	Article	IF	CITATIONS
19	Trichoderma secondary metabolites that affect plant metabolism. Natural Product Communications, 2012, 7, 1545-50.	0.2	61
20	Suppression Subtractive Hybridization analysis provides new insights into the tomato (Solanum) Tj ETQq0 0 (Journal of Plant Physiology, 2016, 190, 79-94.	0 rgBT /Overl 1.6	ock 10 Tf 50 7 56
21	Cerinolactone, a Hydroxy-Lactone Derivative from <i>Trichoderma cerinum</i> . Journal of Natural Products, 2012, 75, 103-106.	1.5	49
22	Improvement of plant performance under water deficit with the employment of biological and chemical priming agents. Journal of Agricultural Science, 2018, 156, 680-688.	0.6	49
23	Trichoderma spp. alleviate phytotoxicity in lettuce plants (Lactuca sativa L.) irrigated with arsenic-contaminated water. Journal of Plant Physiology, 2014, 171, 1378-1384.	1.6	45
24	Plant Roots Release Small Extracellular Vesicles with Antifungal Activity. Plants, 2020, 9, 1777.	1.6	44
25	Treatment of Cereal Products with a Tailored Preparation ofTrichodermaEnzymes Increases the Amount of Soluble Dietary Fiber. Journal of Agricultural and Food Chemistry, 2006, 54, 7863-7869.	2.4	43
26	Functional Expression of the Gene cu, Encoding the Phytotoxic Hydrophobin Cerato-ulmin, Enables Ophiostoma quercus, a Nonpathogen on Elm, to Cause Symptoms of Dutch Elm Disease. Molecular Plant-Microbe Interactions, 2000, 13, 43-53.	1.4	41
27	Purification and characterization of a viral chitinase active against plant pathogens and herbivores from transgenic tobacco. Journal of Biotechnology, 2010, 147, 1-6.	1.9	41
28	Establishing Research Strategies, Methodologies and Technologies to Link Genomics and Proteomics to Seagrass Productivity, Community Metabolism, and Ecosystem Carbon Fluxes. Frontiers in Plant Science, 2013, 4, 38.	1.7	38
29	Response of key stress-related genes of the seagrass <i>Posidonia oceanica</i> in the vicinity of submarine volcanic vents. Biogeosciences, 2015, 12, 4185-4194.	1.3	36
30	The expression of the cerato-platanin gene is related to hyphal growth and chlamydospores formation in Ceratocystis platani. FEMS Microbiology Letters, 2012, 327, 155-163.	0.7	33
31	Resilience and robustness of IPM in protected horticulture in the face of potential invasive pests. Crop Protection, 2017, 97, 119-127.	1.0	33
32	The Hydrophobin HYTLO1 Secreted by the Biocontrol Fungus Trichoderma longibrachiatum Triggers a NAADP-Mediated Calcium Signalling Pathway in Lotus japonicus. International Journal of Molecular Sciences, 2018, 19, 2596.	1.8	33
33	Changes in Trichoderma asperellum enzyme expression during parasitism of the cotton root rot pathogen Phymatotrichopsis omnivora. Fungal Biology, 2015, 119, 264-273.	1.1	31
34	Four potato (Solanum tuberosum) ABCG transporters and their expression in response to abiotic factors and Phytophthora infestans infection. Journal of Plant Physiology, 2011, 168, 2225-2233.	1.6	28
35	Tomato Plants Treated with Systemin Peptide Show Enhanced Levels of Direct and Indirect Defense Associated with Increased Expression of Defense-Related Genes. Plants, 2019, 8, 395.	1.6	28
36	Cloning and functional characterization of BcatrA, a gene encoding an ABC transporter of the plant pathogenic fungus Botryotinia fuckeliana (Botrytis cinerea). Mycological Research, 2008, 112, 737-746.	2.5	25

MICHELINA RUOCCO

#	Article	IF	CITATIONS
37	Studies on the Effect of Amadoriase fromAspergillus fumigatuson Peptide and Protein Glycation In Vitro. Journal of Agricultural and Food Chemistry, 2007, 55, 4189-4195.	2.4	17
38	Draft whole-genome sequence of the Diaporthe helianthi 7/96 strain, causal agent of sunflower stem canker. Genomics Data, 2016, 10, 151-152.	1.3	16
39	Polyketide synthases of Diaporthe helianthi and involvement of DhPKS1 in virulence on sunflower. BMC Genomics, 2018, 19, 27.	1.2	15
40	Influence of three different soil types on the interaction of two strains of Trichoderma harzianum with Brassica rapa subsp. sylvestris cv. esculenta, under soil mineral fertilization. Geoderma, 2019, 350, 11-18.	2.3	14
41	New tools to improve the shelf life of chestnut fruit during storage. Acta Horticulturae, 2016, , 309-316.	0.1	12
42	Substrate Specificity of Amadoriase I fromAspergillus fumigatus. Annals of the New York Academy of Sciences, 2005, 1043, 837-844.	1.8	11
43	A comparison between constitutive and inducible transgenic expression of the PhRIP I gene for broad-spectrum resistance against phytopathogens in potato. Biotechnology Letters, 2017, 39, 1049-1058.	1.1	11
44	Transcriptome modulation by the beneficial fungus Trichoderma longibrachiatum drives water stress response and recovery in tomato. Environmental and Experimental Botany, 2021, 190, 104588.	2.0	11
45	Potential Role of Beneficial Soil Microorganisms in Plant Tolerance to Abiotic Stress Factors. , 2017, , 191-207.		8
46	Metabolites produced by Gnomoniopsis castanea associated with necrosis of chestnut galls. Chemical and Biological Technologies in Agriculture, 2014, 1, .	1.9	7
47	First report of Neopestalotiopsis clavispora causing crown rot in strawberry in Italy. Journal of Plant Pathology, 2020, 102, 281-281.	0.6	6
48	First report of brown leaf spot caused by Alternaria alternata on cast iron plant (Aspidistra elatior) in Italy. Journal of Plant Pathology, 2018, 100, 117-117.	0.6	4
49	Morphological and Molecular Characterization of Lema bilineata (Germar), a New Alien Invasive Leaf Beetle for Europe, with Notes on the Related Species Lema daturaphila Kogan & Goeden. Insects, 2020, 11, 295.	1.0	3
50	Context-Dependent Effects of Trichoderma Seed Inoculation on Anthracnose Disease and Seed Yield of Bean (PhaseolusÂvulgaris): Ambient Conditions Override Cultivar-Specific Differences. Plants, 2021, 10, 1739.	1.6	2
51	The Vocabulary of Trichoderma-Plant Interactions. Rhizosphere Biology, 2020, , 19-33.	0.4	2
52	A novel understanding of the three-way interaction between Trichoderma spp., the colonized plant and fungal pathogens. , 0, , 291-309.		1