
Ling Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6377852/publications.pdf Version: 2024-02-01

LINC 7HANC

#	Article	IF	CITATIONS
1	Modified cellulose nanocrystals based on <scp>Slâ€ATRP</scp> for enhancing interfacial compatibility and mechanical performance of biodegradable <scp>PLA</scp> / <scp>PBAT</scp> blend. Polymer Composites, 2022, 43, 3753-3764.	2.3	21
2	Preparation of flame retardant glass fiber via emulsion impregnation and application in polyamide 6. Journal of Polymer Engineering, 2022, .	0.6	0
3	Significant Improvement in the Flame Retardancy and Thermal Conductivity of the Epoxy Resin via Constructing a Branched Flame Retardant Based on SI-ATRP Initiated by Dopamine-Modified Boron Nitride. Industrial & Engineering Chemistry Research, 2022, 61, 8031-8042.	1.8	15
4	<scp>Modified TiO₂</scp> @graphene oxide and montmorillonite synergistically enhanced multifunctional nanocomposite films. Polymer Composites, 2021, 42, 2511-2522.	2.3	4
5	Highâ€thermalâ€conduction and lowâ€cost composite originated from the tight packing structure of boron nitride sheets and binary alumina balls. Polymer Composites, 2021, 42, 3562-3571.	2.3	5
6	Revealing the Sudden Alternation in Pt@hâ€BN Nanoreactors for Nearly 100% CO ₂ â€ŧo H ₄ Photoreduction. Advanced Functional Materials, 2021, 31, 2010780.	7.8	43
7	Branched Aggregates with Tunable Morphology via Hierarchical Selfâ€Assembly of Azobenzeneâ€Derived Molecular Double Brushes. Angewandte Chemie, 2021, 133, 17848-17854.	1.6	0
8	Branched Aggregates with Tunable Morphology via Hierarchical Selfâ€Assembly of Azobenzeneâ€Derived Molecular Double Brushes. Angewandte Chemie - International Edition, 2021, 60, 17707-17713.	7.2	15
9	Highly transparent and scratch resistant polysiloxane coatings containing silica nanoparticles. Journal of Colloid and Interface Science, 2020, 559, 273-281.	5.0	31
10	Stretch induced photoluminescence enhanced perovskite quantum dot polymer composites. Journal of Materials Chemistry C, 2020, 8, 1413-1420.	2.7	23
11	Inactive step-edge Pt atoms boost oxygen reduction reaction by activating adsorbed hydrogen atoms. Applied Surface Science, 2020, 504, 144434.	3.1	6
12	Largely enhanced transcrystalline formation and properties of polypropylene on the surface of glass fiber as induced by PEI-CNT and PEI-GO modification. Polymer, 2020, 186, 122025.	1.8	10
13	Bridging boron nitride nanosheets with oriented carbon nanotubes by electrospinning for the fabrication of thermal conductivity enhanced flexible nanocomposites. Composites Science and Technology, 2020, 200, 108429.	3.8	46
14	Promoting the dispersibility of silica and interfacial strength of rubber/silica composites prepared by latex compounding. Journal of Applied Polymer Science, 2020, 137, 49526.	1.3	9
15	The synergetic effect of zinc phthalate and carboxymethyl cellulose – carbon nanotube of glass fibers surfaces on improving strength and toughness of polypropylene composite. Journal of Polymer Science, 2020, 58, 2022-2031.	2.0	5
16	A general carbon monoxide-assisted strategy for synthesizing one-nanometer-thick Pt-based nanowires as effective electrocatalysts. Journal of Colloid and Interface Science, 2020, 572, 170-178.	5.0	10
17	Evolution mechanism of surface hydroxyl groups of silica during heat treatment. Applied Surface Science, 2020, 513, 145766.	3.1	20
18	Locally-ordered PtNiPb ternary nano-pompons as efficient bifunctional oxygen reduction and methanol oxidation catalysts. Nanoscale, 2019, 11, 16945-16953.	2.8	18

LING ZHANG

#	Article	IF	CITATIONS
19	Highly enhanced thermal conductivity of epoxy composites by constructing dense thermal conductive network with combination of alumina and carbon nanotubes. Composites Part A: Applied Science and Manufacturing, 2019, 125, 105496.	3.8	37
20	Highly Stable, Transparent, and Conductive Electrode of Solution-Processed Silver Nanowire-Mxene for Flexible Alternating-Current Electroluminescent Devices. Industrial & Engineering Chemistry Research, 2019, 58, 21485-21492.	1.8	31
21	Zinc oxide with dominant (1 0 0) facets boosts vulcanization activity. European Polymer Journal, 2019, 113, 148-154.	2.6	15
22	Multifunctional films with a highly oriented "nano-brick wall―structure by regulating modified TiO ₂ @graphene oxide/poly(vinyl alcohol) nanocomposites. Nanoscale, 2019, 11, 7424-7432.	2.8	21
23	Polyamide 6 composite with highly improved mechanical properties by PEI-CNT grafted glass fibers through interface wetting, infiltration and crystallization. Polymer, 2019, 172, 253-264.	1.8	24
24	Highly Stretchable, Sensitive, and Transparent Strain Sensors with a Controllable In-Plane Mesh Structure. ACS Applied Materials & Interfaces, 2019, 11, 5316-5324.	4.0	44
25	A Highly Stretchable, Sensitive, and Transparent Strain Sensor Based on Binary Hybrid Network Consisting of Hierarchical Multiscale Metal Nanowires. Advanced Materials Technologies, 2018, 3, 1800020.	3.0	55
26	Transcrystalline induced by MWCNTs and organic nucleating agents at the interface of glass fiber/polypropylene. Polymer Composites, 2018, 39, 3424-3433.	2.3	11
27	L1 ₂ Atomic Ordered Substrate Enhanced Pt-Skin Cu ₃ Pt Catalyst for Efficient Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2018, 10, 38015-38023.	4.0	28
28	3D Ordered Macroporous MoS ₂ @C Nanostructure for Flexible Liâ€lon Batteries. Advanced Materials, 2017, 29, 1603020.	11.1	350
29	Three-Dimensional Highly Stretchable Conductors from Elastic Fiber Mat with Conductive Polymer Coating. ACS Applied Materials & Interfaces, 2017, 9, 30772-30778.	4.0	28
30	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	2.7	63
31	Engineering the outermost layers of TiO ₂ nanoparticles using <i>in situ</i> Mg doping in a flame aerosol reactor. AICHE Journal, 2017, 63, 870-880.	1.8	21
32	Comparative Study on Optical Properties and Scratch Resistance of Nanocomposite Coatings Incorporated with Flame Spray Pyrolyzed Silica Modified via in-situ Route and ex-situ Route. Journal of Materials Science and Technology, 2016, 32, 251-258.	5.6	12
33	Fabrication of Highly Stretchable Conductors Based on 3D Printed Porous Poly(dimethylsiloxane) and Conductive Carbon Nanotubes/Graphene Network. ACS Applied Materials & Interfaces, 2016, 8, 2187-2192.	4.0	104
34	Batteries: 2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage (Adv. Mater. 24/2015). Advanced Materials, 2015, 27, 3582-3582.	11.1	6
35	2D Monolayer MoS ₂ –Carbon Interoverlapped Superstructure: Engineering Ideal Atomic Interface for Lithium Ion Storage. Advanced Materials, 2015, 27, 3687-3695.	11.1	504
36	Facile fabrication of silica–polymer–graphene collaborative nanostructure-based hybrid materials with high conductivity and robust mechanical performance. RSC Advances, 2015, 5, 25450-25456.	1.7	10

Ling Zhang

#	Article	IF	CITATIONS
37	One-step rod coating of high-performance silver nanowire–PEDOT:PSS flexible electrodes with enhanced adhesion after sulfuric acid post-treatment. RSC Advances, 2015, 5, 95280-95286.	1.7	32
38	Electrostatic Layer-by-Layer Assembly of Hierarchical Structure of Multi-Walled Carbon Nanotubes With Glass Fiber Cloth Reinforced Epoxy Composites. Journal of Macromolecular Science - Physics, 2014, 53, 673-682.	0.4	10
39	Self-assembling few-layer MoS ₂ nanosheets on a CNT backbone for high-rate and long-life lithium-ion batteries. RSC Advances, 2014, 4, 40368-40372.	1.7	35
40	Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane). Advanced Functional Materials, 2014, 24, 7548-7556.	7.8	162
41	Preparation of polydopamine-functionalized graphene–Fe ₃ O ₄ magnetic composites with high adsorption capacities. RSC Advances, 2014, 4, 30536-30541.	1.7	55
42	Functional mesoporous carbon-coated CNT network for high-performance supercapacitors. New Journal of Chemistry, 2013, 37, 1294.	1.4	12
43	Synthesis of glass fiberâ€multiwall carbon nanotube hybrid structures for highâ€performance conductive composites. Polymer Composites, 2013, 34, 1313-1320.	2.3	11
44	Production of Flexible and Electrically Conductive Polyethylene–Carbon Nanotube Shish-Kebab Structures and Their Assembly into Thin Films. Industrial & Engineering Chemistry Research, 2012, 51, 5456-5460.	1.8	5
45	Synthesis, Characterization and Electrochemical Capacitance of Urchin-Like Hierarchical Polyaniline Microspheres. Journal of Macromolecular Science - Physics, 2012, 51, 897-905.	0.4	8
46	Direct Growth of Aligned Carbon Nanotubes on Quartz Fibers for Structural Epoxy Composites. Industrial & Engineering Chemistry Research, 2012, 51, 4927-4933.	1.8	11
47	Polyamide 6 composites reinforced with glass fibers modified with electrostatically assembled multiwall carbon nanotubes. Journal of Materials Science, 2012, 47, 5446-5454.	1.7	19
48	The Effects of Copper and Polytetrafluoroethylene (PTFE) on Thermal Conductivity and Tribological Behavior of Polyoxymethylene (POM) Composites. Journal of Macromolecular Science - Physics, 2011, 50, 2023-2033.	0.4	15
49	Effect of perfluoroalkylmethacrylate esterâ€ <i>grafted</i> â€linear lowâ€density polyethylene on the tribological property of polyoxymethylene–linear lowâ€density polyethylene composites. Polymer Engineering and Science, 2011, 51, 925-930.	1.5	3
50	Study of the Preparation and Properties of PBT/Epoxy/SiO ₂ Nanocomposites. Journal of Macromolecular Science - Physics, 2011, 50, 967-974.	0.4	9
51	Synthesis and characterization of polypyrrole/graphite oxide composite by <i>in situ</i> emulsion polymerization. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1329-1335.	2.4	89
52	Thermal conductivity and tribological properties of POM u composites. Polymer Engineering and Science, 2010, 50, 2153-2159.	1.5	24
53	Nonisothermal Crystallization Behaviors of Poly(butylene terephthalate) Nucleated with Elastomer-Modified Nano-SiO ₂ , a Commercial Nucleating Agent (P250), and Talc. Journal of Macromolecular Science - Physics, 2010, 49, 514-527.	0.4	8
54	Effect of Surface Structure of Nano-CaCO ₃ Particles on Mechanical and Rheological Properties of PVC Composites. Journal of Macromolecular Science - Physics, 2010, 49, 970-982.	0.4	24

Ling Zhang

#	Article	IF	CITATIONS
55	Crystallization behavior and UVâ€protection property of PETâ€ZnO nanocomposites prepared by <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2009, 114, 1303-1311.	1.3	51
56	A novel approach to prepare PBT nanocomposites with elastomerâ€modified SiO ₂ particles. Polymer Composites, 2009, 30, 673-679.	2.3	12
57	Aluminum hydroxide filled ethylene vinyl acetate (EVA) composites: effect of the interfacial compatibilizer and the particle size. Journal of Materials Science, 2007, 42, 4227-4232.	1.7	51
58	The influence of thermoelastomers on the crystallization behavior of isotactic polypropylene under shear. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1188-1198.	2.4	6
59	Interfacial structures and mechanical properties of PVC composites reinforced by CaCO3 with different particle sizes and surface treatments. Polymer International, 2006, 55, 158-164.	1.6	100
60	Mechanical properties of PVC/nano-CaCO3 composites. Journal of Materials Science, 2005, 40, 2097-2098.	1.7	27
61	Toughness mechanism of polypropylene/elastomer/filler composites. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1113-1123.	2.4	40
62	Toughness mechanism in polypropylene composites: Polypropylene toughened with elastomer and calcium carbonate. Journal of Polymer Science, Part B: Polymer Physics, 2004, 42, 1656-1662.	2.4	49
63	Direct Reductive Amination from Ketones, Aldehydes to Synthesize Amines Using N, S-Dual Doped Co/C Catalyst. Catalysis Letters, 0, , 1.	1.4	1