Falong Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6377581/publications.pdf

Version: 2024-02-01

41 4,391 27 40
papers citations h-index g-index

55 55 5628 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Single-cell RNA sequencing reveals Nestin+ active neural stem cells outside the central canal after spinal cord injury. Science China Life Sciences, 2022, 65, 295-308.	2.3	24
2	BAP60 plays an opposite role to the MRT-NURF complex in regulating lipid droplet size. Journal of Genetics and Genomics, 2022, 49, 377-379.	1.7	1
3	Cnot8 eliminates na \tilde{A} -ve regulation networks and is essential for na \tilde{A} -ve-to-formative pluripotency transition. Nucleic Acids Research, 2022, , .	6. 5	1
4	H3K27me3 shapes DNA methylome by inhibiting UHRF1-mediated H3 ubiquitination. Science China Life Sciences, 2022, 65, 1685-1700.	2.3	4
5	Transcriptome-wide measurement of poly(A) tail length and composition at subnanogram total RNA sensitivity by PAlso-seq. Nature Protocols, 2022, 17, 1980-2007.	5 . 5	10
6	Hypothalamic Rax+ tanycytes contribute to tissue repair and tumorigenesis upon oncogene activation in mice. Nature Communications, 2021, 12, 2288.	5 . 8	19
7	Mapping Genome-wide Binding Sites of Prox1 in Mouse Cochlea Using the CUT&RUN Approach. Neuroscience Bulletin, 2021, 37, 1703-1707.	1.5	8
8	Overcoming Autocrine FGF Signaling-Induced Heterogeneity in Naive Human ESCs Enables Modeling of Random X Chromosome Inactivation. Cell Stem Cell, 2020, 27, 482-497.e4.	5 . 2	32
9	Dynamic RNA 3′ Uridylation and Guanylation during Mitosis. IScience, 2020, 23, 101402.	1.9	6
10	Rett mutations attenuate phase separation of MeCP2. Cell Discovery, 2020, 6, 38.	3.1	23
11	Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell, 2020, 27, 315-325.e5.	5. 2	45
12	In vivo nuclear capture and molecular profiling identifies Gmeb1 as a transcriptional regulator essential for dopamine neuron function. Nature Communications, 2019, 10, 2508.	5 . 8	3
13	DNA methylation repels targeting of Arabidopsis REF6. Nature Communications, 2019, 10, 2063.	5.8	53
14	Poly(A) inclusive RNA isoform sequencing (PAlsoâ^'seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails. Nature Communications, 2019, 10, 5292.	5.8	78
15	Reprogramming of Chromatin Accessibility in Somatic Cell Nuclear Transfer Is DNA Replication Independent. Cell Reports, 2018, 23, 1939-1947.	2.9	30
16	Loss of H3K27me3 Imprinting in Somatic Cell Nuclear Transfer Embryos Disrupts Post-Implantation Development. Cell Stem Cell, 2018, 23, 343-354.e5.	5.2	105
17	The start of a human life program. Journal of Genetics and Genomics, 2018, 45, 183-184.	1.7	0
18	Genomic imprinting of <i>Xist</i> by maternal H3K27me3. Genes and Development, 2017, 31, 1927-1932.	2.7	118

#	Article	lF	CITATIONS
19	Maternal H3K27me3 controls DNA methylation-independent imprinting. Nature, 2017, 547, 419-424.	13.7	349
20	REF6 recognizes a specific DNA sequence to demethylate H3K27me3 and regulate organ boundary formation in Arabidopsis. Nature Genetics, 2016, 48, 694-699.	9.4	148
21	Loss of HDAC-Mediated Repression and Gain of NF-κB Activation Underlie Cytokine Induction in ARID1A-and PIK3CA-Mutation-Driven Ovarian Cancer. Cell Reports, 2016, 17, 275-288.	2.9	37
22	Establishing Chromatin Regulatory Landscape during Mouse Preimplantation Development. Cell, 2016, 165, 1375-1388.	13.5	254
23	Drosophila Homolog of FMRP Maintains Genome Integrity by Interacting with Piwi. Journal of Genetics and Genomics, 2016, 43, 11-24.	1.7	15
24	Cell totipotency: molecular features, induction, and maintenance. National Science Review, 2015, 2, 217-225.	4.6	66
25	C-terminal domains of histone demethylase JMJ14 interact with a pair of NAC transcription factors to mediate specific chromatin association. Cell Discovery, 2015, 1 , .	3.1	47
26	Histone Demethylase Expression Enhances Human Somatic Cell Nuclear Transfer Efficiency and Promotes Derivation of Pluripotent Stem Cells. Cell Stem Cell, 2015, 17, 758-766.	5.2	158
27	Embryonic Development following Somatic Cell Nuclear Transfer Impeded by Persisting Histone Methylation. Cell, 2014, 159, 884-895.	13.5	382
28	<i>Arabidopsis</i> protein arginine methyltransferase 3 is required for ribosome biogenesis by affecting precursor ribosomal RNA processing. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16190-16195.	3.3	68
29	Tet3 and DNA Replication Mediate Demethylation of Both the Maternal and Paternal Genomes in Mouse Zygotes. Cell Stem Cell, 2014, 15, 459-471.	5.2	191
30	Role of Tet proteins in enhancer activity and telomere elongation. Genes and Development, 2014, 28, 2103-2119.	2.7	226
31	Ubiquitin-Specific Proteases UBP12 and UBP13 Act in Circadian Clock and Photoperiodic Flowering Regulation in Arabidopsis Â. Plant Physiology, 2013, 162, 897-906.	2.3	101
32	The enzymatic activity of Arabidopsis protein arginine methyltransferase 10 is essential for flowering time regulation. Protein and Cell, 2012, 3, 450-459.	4.8	11
33	Arabidopsis REF6 is a histone H3 lysine 27 demethylase. Nature Genetics, 2011, 43, 715-719.	9.4	351
34	Crystal Structure of the Plant Epigenetic Protein Arginine Methyltransferase 10. Journal of Molecular Biology, 2011, 414, 106-122.	2.0	27
35	JMJ14 is an H3K4 demethylase regulating flowering time in Arabidopsis. Cell Research, 2010, 20, 387-390.	5.7	154
36	Autocatalytic differentiation of epigenetic modifications within the Arabidopsis genome. EMBO Journal, 2010, 29, 3496-3506.	3.5	127

FALONG LU

#	Article	IF	CITATIONS
37	Arginine methylation mediated by the <i>Arabidopsis</i> homolog of PRMT5 is essential for proper pre-mRNA splicing. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19114-19119.	3.3	174
38	Histone Methylation in Higher Plants. Annual Review of Plant Biology, 2010, 61, 395-420.	8.6	526
39	Comparative Analysis of JmjC Domainâ€containing Proteins Reveals the Potential Histone Demethylases in <i>Arabidopsis</i> and Rice. Journal of Integrative Plant Biology, 2008, 50, 886-896.	4.1	178
40	Mutations in the Type II Protein Arginine Methyltransferase AtPRMT5 Result in Pleiotropic Developmental Defects in Arabidopsis. Plant Physiology, 2007, 144, 1913-1923.	2.3	99
41	Regulation of flowering time by the protein arginine methyltransferase AtPRMT10. EMBO Reports, 2007, 8, 1190-1195.	2.0	71