
Elisabeth Huber Sannwald

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6377405/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biocrusts in Mexican deserts and semideserts: A review of their species composition, ecology, and ecosystem function. Journal of Arid Environments, 2022, 199, 104712.	2.4	7
2	Climate predictors and climate change projections for avian haemosporidian prevalence in Mexico. Parasitology, 2022, 149, 1129-1144.	1.5	3
3	What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews, 2022, 97, 1768-1785.	10.4	87
4	Towards a predictive framework for biocrust mediation of plant performance: A metaâ€analysis. Journal of Ecology, 2019, 107, 2789-2807.	4.0	92
5	Soil fungal abundance and plant functional traits drive fertile island formation in global drylands. Journal of Ecology, 2018, 106, 242-253.	4.0	123
6	Application of ecosystem services in natural resource management decision making. Integrated Environmental Assessment and Management, 2017, 13, 74-84.	2.9	16
7	Human impacts and aridity differentially alter soil <scp>N</scp> availability in drylands worldwide. Global Ecology and Biogeography, 2016, 25, 36-45.	5.8	33
8	Drought manipulation and its direct and legacy effects on productivity of a monodominant and mixed-species semi-arid grassland. Agricultural and Forest Meteorology, 2016, 223, 132-140.	4.8	33
9	Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the United States of America, 2015, 112, 15684-15689.	7.1	728
10	Geoecohydrological mechanisms couple soil and leaf water dynamics and facilitate species coexistence in shallow soils of a tropical semiarid mixed forest. New Phytologist, 2015, 207, 59-69.	7.3	18
11	Functional ecohydrological differences among native and exotic grassland covers in sub-urban landscapes of Chihuahua city, Mexico. Landscape and Urban Planning, 2015, 139, 54-62.	7.5	5
12	Long-term soil organic carbon and nitrogen dynamics after conversion of tropical forest to traditional sugarcane agriculture in East Mexico. Soil and Tillage Research, 2015, 147, 20-29.	5.6	42
13	Climate and soil attributes determine plant species turnover in global drylands. Journal of Biogeography, 2014, 41, 2307-2319.	3.0	76
14	Plant phenotypic functional composition effects on soil processes in a semiarid grassland. Soil Biology and Biochemistry, 2013, 66, 1-9.	8.8	6
15	Decoupling of soil nutrient cycles as a function of aridity in global drylands. Nature, 2013, 502, 672-676.	27.8	733
16	Landscape diversity in a rural territory: Emerging land use mosaics coupled to livelihood diversification. Land Use Policy, 2013, 30, 814-824.	5.6	53
17	Navigating challenges and opportunities of land degradation and sustainable livelihood development in dryland social–ecological systems: a case study from Mexico. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 3158-3177.	4.0	59
18	Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 2012, 335, 214-218.	12.6	1,043

Elisabeth Huber Sannwald

#	Article	IF	CITATIONS
19	Opportunities for advancing carbon cycle science in Mexico: toward a continental scale understanding. Environmental Science and Policy, 2012, 21, 84-93.	4.9	23
20	Early stage of single and mixed leaf-litter decomposition in semiarid forest pine-oak: the role of rainfall and microsite. Biogeochemistry, 2012, 108, 245-258.	3.5	42
21	Impacts of Drought on Agriculture in Northern Mexico. Hexagon Series on Human and Environmental Security and Peace, 2011, , 875-891.	0.2	6
22	Effects of habitat type on bird nesting in the desert grasslands of central Mexico: conservation implications. Oryx, 2010, 44, 448-454.	1.0	3
23	Changing human–ecological relationships and drivers using the Quesungual agroforestry system in western Honduras. Renewable Agriculture and Food Systems, 2010, 25, 219-227.	1.8	12
24	Fine-Scale Spatial Genetic Structure in Perennial Grasses in Three Environments. Rangeland Ecology and Management, 2009, 62, 356-363.	2.3	11
25	Holistic, adaptive management of the terrestrial carbon cycle at local and regional scales. Global Environmental Change, 2008, 18, 128-141.	7.8	18
26	Global Desertification: Building a Science for Dryland Development. Science, 2007, 316, 847-851.	12.6	2,072
27	Ecohydrological feedbacks and linkages associated with land degradation: a case study from Mexico. Hydrological Processes, 2006, 20, 3395-3411.	2.6	41
28	UNDERSTANDING GLOBAL DESERTIFICATION: BIOPHYSICAL AND SOCIOECONOMIC DIMENSIONS OF HYDROLOGY. , 2006, , 315-332.		7
29	Establishing Native Grasses in a Big Sagebrush-Dominated Site: An Intermediate Restoration Step. Restoration Ecology, 2005, 13, 292-301.	2.9	49
30	The Future of Biodiversity in a Changing World. Ecological Studies, 2001, , 1-4.	1.2	2
31	Potential Biodiversity Change: Global Patterns and Biome Comparisons. Ecological Studies, 2001, , 351-367.	1.2	8
32	Heterogeneous Soil-Resource Distribution and Plant Responses — from Individual-Plant Growth to Ecosystem Functioning. Progress in Botany Fortschritte Der Botanik, 2001, , 451-476.	0.3	27
33	Morphological Plasticity Following Species-Specific Recognition and Competition in Two Perennial Grasses. American Journal of Botany, 1996, 83, 919.	1.7	29