
José M Estevez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637733/publications.pdf Version: 2024-02-01

LOSÃO M ESTEVEZ

#	Article	IF	CITATIONS
1	Apoplastic class III peroxidases PRX62 and PRX69 promote Arabidopsis root hair growth at low temperature. Nature Communications, 2022, 13, 1310.	5.8	25
2	Class III Peroxidases in Response to Multiple Abiotic Stresses in Arabidopsis thaliana Pyrenean Populations. International Journal of Molecular Sciences, 2022, 23, 3960.	1.8	6
3	Class III Peroxidases PRX01, PRX44, and PRX73 Control Root Hair Growth in Arabidopsis thaliana. International Journal of Molecular Sciences, 2022, 23, 5375.	1.8	15
4	Ethylene signaling increases reactive oxygen species accumulation to drive root hair initiation in <i>Arabidopsis</i> . Development (Cambridge), 2022, 149, .	1.2	13
5	The tip of the iceberg: ROP2 directly interacts with SYP121 to regulate root-hair polarization, elongation, and exocytosis. Molecular Plant, 2022, , .	3.9	0
6	Two titans finally meet each other under nitrogen deficiencies: FERONIA-TORC1 activation promotes plant growth. Molecular Plant, 2022, 15, 1095-1097.	3.9	1
7	Auxin–Environment Integration in Growth Responses to Forage for Resources. Cold Spring Harbor Perspectives in Biology, 2021, 13, a040030.	2.3	6
8	The tip of the iceberg: emerging roles of TORC1, and its regulatory functions in plant cells. Journal of Experimental Botany, 2021, 72, 4085-4101.	2.4	15
9	Highlighting reactive oxygen species as multitaskers in root development. IScience, 2021, 24, 101978.	1.9	53
10	Cracking the "Sugar Code― A Snapshot of N- and O-Glycosylation Pathways and Functions in Plants Cells. Frontiers in Plant Science, 2021, 12, 640919.	1.7	33
11	A Stringent-Response-Defective Bradyrhizobium diazoefficiens Strain Does Not Activate the Type 3 Secretion System, Elicits an Early Plant Defense Response, and Circumvents NH 4 NO 3 -Induced Inhibition of Nodulation. Applied and Environmental Microbiology, 2021, 87, .	1.4	3
12	The lncRNA <i>APOLO</i> and the transcription factor WRKY42 target common cell wall EXTENSIN encoding genes to trigger root hair cell elongation. Plant Signaling and Behavior, 2021, 16, 1920191.	1.2	19
13	The IncRNA APOLO interacts with the transcription factor WRKY42 to trigger root hair cell expansion in response to cold. Molecular Plant, 2021, 14, 937-948.	3.9	72
14	Prolineâ€rich extensinâ€like receptor kinases PERK5 and PERK12 are involved in pollen tube growth. FEBS Letters, 2021, 595, 2593-2607.	1.3	14
15	Salt stress on Lotus tenuis triggers cell wall polysaccharide changes affecting their digestibility by ruminants. Plant Physiology and Biochemistry, 2021, 166, 405-415.	2.8	6
16	The RALF1–FERONIA Complex Phosphorylates elF4E1 to Promote Protein Synthesis and Polar Root Hair Growth. Molecular Plant, 2020, 13, 698-716.	3.9	88
17	The role of P-type IIA and P-type IIB Ca2+-ATPases in plant development and growth. Journal of Experimental Botany, 2020, 71, 1239-1248.	2.4	39
18	Influence of cell wall polymers and their modifying enzymes during plant–aphid interactions. Journal of Experimental Botany, 2020, 71, 3854-3864.	2.4	29

José M Estevez

#	Article	IF	CITATIONS
19	Imaging and Analysis of the Content of Callose, Pectin, and Cellulose in the Cell Wall of Arabidopsis Pollen Tubes Grown In Vitro. Methods in Molecular Biology, 2020, 2160, 233-242.	0.4	4
20	A cell surface arabinogalactanâ€peptide influences root hair cell fate. New Phytologist, 2020, 227, 732-743.	3.5	26
21	Autocrine regulation of root hair size by the RALFâ€FERONIAâ€RSL4 signaling pathway. New Phytologist, 2020, 227, 45-49.	3.5	49
22	Arabidopsis RAD23B regulates pollen development by mediating degradation of KRP1. Journal of Experimental Botany, 2020, 71, 4010-4019.	2.4	10
23	Cellulose-rich secondary walls in wave-swept red macroalgae fortify flexible tissues. Planta, 2019, 250, 1867-1879.	1.6	13
24	<i>Arabidopsis</i> pollen extensins LRX are required for cell wall integrity during pollen tube growth. FEBS Letters, 2018, 592, 233-243.	1.3	75
25	Reduced expression of selected <scp><i>FASCICLINâ€LIKE ARABINOGALACTAN PROTEIN</i></scp> genes associates with the abortion of kernels in field crops of <scp><i>Zea mays</i></scp> (maize) and of <scp>A</scp> rabidopsis seeds. Plant, Cell and Environment, 2018, 41, 661-674.	2.8	38
26	Filling the Gaps to Solve the Extensin Puzzle. Molecular Plant, 2018, 11, 645-658.	3.9	50
27	How Does pH Fit in with Oscillating Polar Growth?. Trends in Plant Science, 2018, 23, 479-489.	4.3	33
28	Calcium dynamics in tomato pollen tubes using the Yellow Cameleon 3.6 sensor. Plant Reproduction, 2018, 31, 159-169.	1.3	9
29	High Auxin and High Phosphate Impact on RSL2 Expression and ROS-Homeostasis Linked to Root Hair Growth in Arabidopsis thaliana. Frontiers in Plant Science, 2018, 9, 1164.	1.7	29
30	<i>Arabidopsis thaliana <scp>FLA</scp>4</i> functions as a glycanâ€stabilized soluble factor via its carboxyâ€proximal Fasciclin 1 domain. Plant Journal, 2017, 91, 613-630.	2.8	49
31	RSL4 Takes Control: Multiple Signals, One Transcription Factor. Trends in Plant Science, 2017, 22, 553-555.	4.3	22
32	Molecular link between auxin and ROS-mediated polar growth. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5289-5294.	3.3	201
33	Identification and evolution of a plant cell wall specific glycoprotein glycosyl transferase, ExAD. Scientific Reports, 2017, 7, 45341.	1.6	29
34	Sulfated Polysaccharides in the Freshwater Green Macroalga Cladophora surera Not Linked to Salinity Adaptation. Frontiers in Plant Science, 2017, 8, 1927.	1.7	17
35	ROS Regulation of Polar Growth in Plant Cells. Plant Physiology, 2016, 171, 1593-1605.	2.3	106
36	Auxin and Cellular Elongation. Plant Physiology, 2016, 170, 1206-1215.	2.3	87

JOSé M ESTEVEZ

#	Article	IF	CITATIONS
37	An update on cell surface proteins containing extensin-motifs. Journal of Experimental Botany, 2016, 67, 477-487.	2.4	68
38	Complex Regulation of Prolyl-4-Hydroxylases Impacts Root Hair Expansion. Molecular Plant, 2015, 8, 734-746.	3.9	70
39	Low Sugar Is Not Always Good: Impact of Specific <i>O</i> -Glycan Defects on Tip Growth in Arabidopsis. Plant Physiology, 2015, 168, 808-813.	2.3	41
40	Optimized Method for Growing In Vitro Arabidopsis thaliana Pollen Tubes. Methods in Molecular Biology, 2015, 1242, 41-47.	0.4	2
41	Response of the fungus Pseudocercospora griseola f. mesoamericana to Tricyclazole. Mycological Progress, 2015, 14, 1.	0.5	9
42	Plant Cell Expansion. Methods in Molecular Biology, 2015, 1242, v.	0.4	2
43	Improved ROS Measurement in Root Hair Cells. Methods in Molecular Biology, 2015, 1242, 67-71.	0.4	8
44	Live Imaging of Root Hairs. Methods in Molecular Biology, 2015, 1242, 59-66.	0.4	0
45	An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Frontiers in Plant Science, 2014, 5, 395.	1.7	106
46	Genome-wide data (ChIP-seq) enabled identification of cell wall-related and aquaporin genes as targets of tomato ASR1, a drought stress-responsive transcription factor. BMC Plant Biology, 2014, 14, 29.	1.6	77
47	Anticoagulant Activity of a Unique Sulfated Pyranosic (1→3)-β-l-Arabinan through Direct Interaction with Thrombin. Journal of Biological Chemistry, 2013, 288, 223-233.	1.6	46
48	Current Challenges in Plant Cell Walls: Editorial Overview. Frontiers in Plant Science, 2012, 3, 232.	1.7	3
49	Recent Advances on the Posttranslational Modifications of EXTs and Their Roles in Plant Cell Walls. Frontiers in Plant Science, 2012, 3, 93.	1.7	50
50	Nuclear Import and Dimerization of Tomato ASR1, a Water Stress-Inducible Protein Exclusive to Plants. PLoS ONE, 2012, 7, e41008.	1.1	27
51	Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition Â. Plant Physiology, 2012, 158, 252-263.	2.3	79
52	Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus <i>Plectosphaerella cucumerina</i> Â Â. Plant Physiology, 2012, 160, 2109-2124.	2.3	132
53	Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi. Molecular Plant, 2012, 5, 98-114.	3.9	141
54	Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1 ^{A903V} and CESA3 ^{T942I} of cellulose synthase. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4098-4103.	3.3	165

José M Estevez

#	Article	IF	CITATIONS
55	Sulfated β-d-mannan from green seaweed Codium vermilara. Carbohydrate Polymers, 2012, 87, 916-919.	5.1	48
56	CHARACTERIZATION OF CELL WALL POLYSACCHARIDES OF THE COENCOCYTIC GREEN SEAWEED <i>BRYOPSIS PLUMOSA</i> (BRYOPSIDACEAE, CHLOROPHYTA) FROM THE ARGENTINE COAST ¹ . Journal of Phycology, 2012, 48, 326-335.	1.0	35
57	O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth. Science, 2011, 332, 1401-1403.	6.0	287
58	CELL WALL VARIABILITY IN THE GREEN SEAWEED CODIUM VERMILARA (BRYOPSIDALES CHLOROPHYTA) FROM THE ARGENTINE COAST1. Journal of Phycology, 2011, 47, 802-810.	1.0	15
59	Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes. Current Biology, 2011, 21, 328-333.	1.8	101
60	Root hair sweet growth. Plant Signaling and Behavior, 2011, 6, 1600-1602.	1.2	6
61	In-vitro depolymerization of Scutia buxifolia leaf-litter by a dominant Ascomycota Ciliochorella sp International Biodeterioration and Biodegradation, 2010, 64, 262-266.	1.9	18
62	CELLâ€WALL POLYMER MAPPING IN THE COENOCYTIC MACROALGA <i>CODIUM VERMILARA</i> (BRYOPSIDALES, CHLOROPHYTA) ¹ . Journal of Phycology, 2010, 46, 456-465.	1.0	36
63	DIFFERENCES IN POLYSACCHARIDE STRUCTURE BETWEEN CALCIFIED AND UNCALCIFIED SEGMENTS IN THE CORALLINE <i>CALLIARTHRON CHEILOSPORIOIDES</i> (CORALLINALES, RHODOPHYTA) ¹ . Journal of Phycology, 2010, 46, 507-515.	1.0	30
64	The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in <i>Arabidopsis thaliana</i> . Molecular Plant-Microbe Interactions, 2009, 22, 953-963.	1.4	100
65	Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile. Glycobiology, 2009, 19, 212-228.	1.3	99
66	Discovery of Lignin in Seaweed Reveals Convergent Evolution of Cell-Wall Architecture. Current Biology, 2009, 19, 169-175.	1.8	371
67	The system of sulfated galactans from the red seaweed Gymnogongrus torulosus (Phyllophoraceae,) Tj ETQq1 1	0.784314 5.1	rgBT /Overio
68	CELL WALL CARBOHYDRATE EPITOPES IN THE GREEN ALGA <i>OEDOGONIUM BHARUCHAE</i> F. <i>MINOR</i> (OEDOGONIALES, CHLOROPHYTA) ¹ . Journal of Phycology, 2008, 44, 1257-1268.	1.0	32
69	Polysaccharides from the green seaweeds Codium fragile and C. vermilara with controversial effects on hemostasis. International Journal of Biological Macromolecules, 2007, 41, 641-649.	3.6	87
70	FlAsH-based live-cell fluorescent imaging of synthetic peptides expressed in Arabidopsis and tobacco. BioTechniques, 2006, 41, 569-574.	0.8	22
71	Characterization of Synthetic Hydroxyproline-Rich Proteoglycans with Arabinogalactan Protein and Extensin Motifs in Arabidopsis. Plant Physiology, 2006, 142, 458-470.	2.3	87
72	The system of galactans of the red seaweed, Kappaphycus alvarezii, with emphasis on its minor constituents. Carbohydrate Research, 2004, 339, 2575-2592.	1.1	60

#	ARTICLE	IF	CITATIONS
73	Fine structural study of the red seaweed Gymnogongrus torulosus (Phyllophoraceae, Rhodophyta). Biocell, 2003, 27, 181-7.	0.4	1
74	Novel DL-Galactan Hybrids from the Red Seaweed <i>Gymnogongrus Torulosus</i> are Potent Inhibitors of Herpes Simplex Virus and Dengue Virus. Antiviral Chemistry and Chemotherapy, 2002, 13, 83-89.	0.3	76
75	CARRAGEENANS BIOSYNTHESIZED BY CARPOSPOROPHYTES OF RED SEAWEEDS GIGARTINA SKOTTSBERGII (GIGARTINACEAE) AND GYMNOGONGRUS TORULOSUS (PHYLLOPHORACEAE) 1. Journal of Phycology, 2002, 38, 344-350.	1.0	14
76	dl-Galactan hybrids and agarans from gametophytes of the red seaweed Gymnogongrus torulosus. Carbohydrate Research, 2001, 331, 27-41.	1.1	46
77	The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii. Carbohydrate Research, 2000, 325, 287-299.	1.1	57