Sasan Nouranian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376540/publications.pdf

Version: 2024-02-01

361413 377865 1,213 45 20 34 citations h-index g-index papers 46 46 46 1323 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Sintered Ti/Al core/shell nanoparticles: computational investigation of the effects of core volume fraction, heating rate, and room-temperature relaxation on tensile properties. Journal Physics D: Applied Physics, 2022, 55, 025302.	2.8	3
2	Hyperbranched polyethylenimine functionalized silica/polysulfone nanocomposite membranes for water purification. Chemosphere, 2022, 290, 133363.	8.2	43
3	Highly antifouling polymer-nanoparticle-nanoparticle/polymer hybrid membranes. Science of the Total Environment, 2022, 810, 152228.	8.0	41
4	Mechanical properties of bamboo fiber-reinforced polymer composites: a review of recent case studies. Journal of Materials Science, 2022, 57, 3143-3167.	3.7	53
5	A review of recent progress in improving the fracture toughness of epoxyâ€based composites using carbonaceous nanofillers. Polymer Composites, 2022, 43, 1871-1886.	4.6	64
6	Thermal barrier coatings for cellulosic substrates: A statistically designed molecular dynamics study of the coating formulation effects on thermal conductivity. Applied Surface Science, 2022, 587, 152879.	6.1	14
7	A review of electrical and thermal conductivities of epoxy resin systems reinforced with carbon nanotubes and graphene-based nanoparticles. Polymer Testing, 2022, 112, 107645.	4.8	51
8	Solvation of potential stable cations and anions originating from the Martian regolith in select ionic liquids. Journal of Molecular Liquids, 2021, 324, 114691.	4.9	5
9	Effects of Ionic Liquid Nanoconfinement on the CO ₂ /CH ₄ Separation in Poly(vinylidene fluoride)/1-Ethyl-3-methylimidazolium Thiocyanate Membranes. ACS Applied Materials & Amp; Interfaces, 2021, 13, 44460-44469.	8.0	9
10	Molecular dynamics study of temperature and heating rate–dependent sintering of titanium nanoparticles and its influence on the sequent tension tests of the formed particle-chain products. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	7
11	Doxorubicin Stability and Retention on PEGylated Graphene Oxide Nanocarriers Adjacent to Human Serum Albumin. ACS Applied Bio Materials, 2020, 3, 7646-7653.	4.6	3
12	On the potential of ionic liquids to recover metals from the Martian regolith: Computational insights into interfacial interactions. Journal of Molecular Liquids, 2020, 319, 114208.	4.9	3
13	Molecular Insights into the Loading and Dynamics of Doxorubicin on PEGylated Graphene Oxide Nanocarriers. ACS Applied Bio Materials, 2020, 3, 1354-1363.	4.6	37
14	3D Graphene as an Unconventional Support Material for Ionic Liquid Membranes: Computational Insights into Gas Separations. Industrial & Engineering Chemistry Research, 2020, 59, 2203-2210.	3.7	12
15	Homogeneous and biphasic cellulose acetate/room temperature ionic liquid membranes for gas separations: Solvent and phase-inversion casting vs. supported ionic liquid membranes. Journal of Membrane Science, 2019, 589, 117228.	8.2	13
16	Free volume and internal structural evolution during creep in model amorphous polyethylene by Molecular Dynamics simulations. Polymer, 2019, 170, 85-100.	3.8	30
17	Application of materials informatics to vapor-grown carbon nanofiber/vinyl ester nanocomposites through self-organizing maps and clustering techniques. Computational Materials Science, 2019, 158, 98-109.	3.0	3
18	Quantifying Parameter Sensitivity and Uncertainty for Interatomic Potential Design: Application to Saturated Hydrocarbons. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, 2018, 4, .	1.1	4

#	Article	IF	CITATIONS
19	Thermal Analysis of Montmorillonite/Graphene Double-Layer Coating as a Potential Lightning Strike Protective Layer for Cross-Linked Epoxy by Molecular Dynamics Simulation. ACS Applied Nano Materials, 2018, 1, 2521-2525.	5.0	7
20	Melting and solidification behavior of Cu/Al and Ti/Al bimetallic core/shell nanoparticles during additive manufacturing by molecular dynamics simulation. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	28
21	A fundamental investigation of the surfactant-stabilized single-walled carbon nanotube/epoxy resin suspensions by molecular dynamics simulation. Materials Research Express, 2017, 4, 015016.	1.6	9
22	Interatomic Potential for Hydrocarbons on the Basis of the Modified Embedded-Atom Method with Bond Order (MEAM-BO). Journal of Physical Chemistry A, 2017, 121, 1502-1524.	2.5	18
23	Confinement effects on the thermal stability of poly(ethylene oxide)/graphene nanocomposites: A reactive molecular dynamics simulation study. Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1026-1035.	2.1	16
24	Substantially enhanced durability of polyhedral oligomeric silsequioxane-polyimide nanocomposites against atomic oxygen erosion. European Polymer Journal, 2017, 92, 233-249.	5.4	28
25	Molecular Insights on the CH ₄ /CO ₂ Separation in Nanoporous Graphene and Graphene Oxide Separation Platforms: Adsorbents versus Membranes. Journal of Physical Chemistry C, 2017, 121, 12308-12320.	3.1	48
26	Reactive Molecular Simulation of the Damage Mitigation Efficacy of POSS-, Graphene-, and Carbon Nanotube-Loaded Polyimide Coatings Exposed to Atomic Oxygen Bombardment. ACS Applied Materials & Amp; Interfaces, 2017, 9, 12802-12811.	8.0	47
27	Molecular simulation insights on the in vacuo adsorption of amino acids on graphene oxide surfaces with varying surface oxygen densities. Journal of Nanoparticle Research, $2016, 18, 1$.	1.9	15
28	Molecular simulation of pH-dependent diffusion, loading, and release of doxorubicin in graphene and graphene oxide drug delivery systems. Journal of Materials Chemistry B, 2016, 4, 7441-7451.	5.8	120
29	Creep characterization of vaporâ€grown carbon nanofiber/vinyl ester nanocomposites using a response surface methodology. Journal of Applied Polymer Science, 2015, 132, .	2.6	2
30	Comprehensive mechanical property classification of vapor-grown carbon nanofiber/vinyl ester nanocomposites using support vector machines. Computational Materials Science, 2015, 99, 316-325.	3.0	9
31	Two-phase solid–liquid coexistence of Ni, Cu, and Al by molecular dynamics simulations using the modified embedded-atom method. Acta Materialia, 2015, 86, 169-181.	7.9	105
32	Quantitative modeling of the equilibration of two-phase solid-liquid Fe by atomistic simulations on diffusive time scales. Physical Review B, 2015 , 91 , .	3.2	67
33	Simulations of tensile bond rupture in single alkane molecules using reactive interatomic potentials. Chemical Physics Letters, 2015, 635, 278-284.	2.6	14
34	An interatomic potential for saturated hydrocarbons based on the modified embedded-atom method. Physical Chemistry Chemical Physics, 2014, 16, 6233-6249.	2.8	41
35	Statistical characterization of the impact strengths of vaporâ€grown carbon nanofiber/vinyl ester nanocomposites using a central composite design. Journal of Applied Polymer Science, 2013, 128, 1070-1080.	2.6	12
36	Response surface predictions of the viscoelastic properties of vaporâ€grown carbon nanofiber/vinyl ester nanocomposites. Journal of Applied Polymer Science, 2013, 130, 234-247.	2.6	10

#	Article	IF	CITATIONS
37	Data mining and knowledge discovery in materials science and engineering: A polymer nanocomposites case study. Advanced Engineering Informatics, 2013, 27, 615-624.	8.0	23
38	Creep Compliance Characterization of Vapor-Grown Carbon Nanofiber/Vinyl Ester Nanocomposites Using a Central Composite Design of Experiments. , 2013, , .		0
39	Characterization, prediction, and optimization of flexural properties of vapor-grown carbon nanofiber/vinyl ester nanocomposites by response surface modeling. Journal of Applied Polymer Science, 2013, 130, 2087-2099.	2.6	13
40	Characterization and failure analysis of a polymeric clamp hanger component. Engineering Failure Analysis, 2012, 26, 230-239.	4.0	4
41	Molecular dynamics simulations of oxidized vapor-grown carbon nanofiber surface interactions with vinyl ester resin monomers. Carbon, 2012, 50, 748-760.	10.3	40
42	Molecular dynamics simulations of vinyl ester resin monomer interactions with a pristine vapor-grown carbon nanofiber and their implications for composite interphase formation. Carbon, 2011, 49, 3219-3232.	10.3	53
43	Review of Hierarchical Multiscale Modeling to Describe the Mechanical Behavior of Amorphous Polymers. Journal of Engineering Materials and Technology, Transactions of the ASME, 2009, 131, .	1.4	65
44	High Strain Rate Behavior of Carbon Nanofiber Reinforced Vinyl Ester. , 2009, , .		0
45	Dynamic Mechanical and Thermal Properties of Cellulose Nanocrystal/Epoxy Nanocomposites. Green Materials, 0, , 1-47.	2.1	1