
Bohan Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376371/publications.pdf Version: 2024-02-01

Вонам Ци

#	Article	IF	CITATIONS
1	NLP2-NR Module Associated NO Is Involved in Regulating Seed Germination in Rice under Salt Stress. Plants, 2022, 11, 795.	3.5	13
2	Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. Plant Journal, 2022, 109, 1457-1472.	5.7	20
3	Moderate Soil Drying-Induced Alternative Splicing Provides a Potential Novel Approach for the Regulation of Grain Filling in Rice Inferior Spikelets. International Journal of Molecular Sciences, 2022, 23, 7770.	4.1	5
4	Metabolome Analysis Revealed the Mechanism of Exogenous Glutathione to Alleviate Cadmium Stress in Maize (Zea mays L.) Seedlings. Plants, 2021, 10, 105.	3.5	23
5	Dichromate-induced ethylene biosynthesis, perception, and signaling regulate the variance in root growth inhibition among Shaheen basmati and basmati-385 rice varieties. Environmental Science and Pollution Research, 2021, 28, 38016-38025.	5.3	5
6	Overexpression of MADS-box transcription factor OsMADS25 enhances salt stress tolerance in Rice and Arabidopsis. Plant Growth Regulation, 2020, 90, 163-171.	3.4	21
7	Ethylene mediates CuO NP-induced ultrastructural changes and oxidative stress in Arabidopsis thaliana leaves. Environmental Science: Nano, 2020, 7, 938-953.	4.3	24
8	Nitrate regulation of lateral root and root hair development in plants. Journal of Experimental Botany, 2020, 71, 4405-4414.	4.8	45
9	OsmiR535, a Potential Genetic Editing Target for Drought and Salinity Stress Tolerance in Oryza sativa. Plants, 2020, 9, 1337.	3.5	73
10	Involvement of ethylene signaling in zinc oxide nanoparticle-mediated biochemical changes in <i>Arabidopsis thaliana</i> leaves. Environmental Science: Nano, 2019, 6, 341-355.	4.3	50
11	Ethylene mediates dichromate-induced oxidative stress and regulation of the enzymatic antioxidant system-related transcriptome in Arabidopsis thaliana. Environmental and Experimental Botany, 2019, 161, 166-179.	4.2	50
12	Ethylene mediates dichromateâ€induced inhibition of primary root growth by altering <i>AUX1</i> expression and auxin accumulation in <scp><i>Arabidopsis thaliana</i></scp> . Plant, Cell and Environment, 2018, 41, 1453-1467.	5.7	46
13	PIL5 represses floral transition in Arabidopsis under long day conditions. Biochemical and Biophysical Research Communications, 2018, 499, 513-518.	2.1	11
14	Involvement of histone acetylation and deacetylation in regulating auxin responses and associated phenotypic changes in plants. Plant Cell Reports, 2018, 37, 51-59.	5.6	14
15	NbGIS regulates glandular trichome initiation through GA signaling in tobacco. Plant Molecular Biology, 2018, 98, 153-167.	3.9	29
16	SPATULA regulates floral transition and photomorphogenesis in a PHYTOCHROME B-dependent manner in Arabidopsis. Biochemical and Biophysical Research Communications, 2018, 503, 2380-2385.	2.1	5
17	Effect of Bisphenol A-induced Oxidative Stress on the Ultra Structure and Antioxidant Defence System of Arabidopsis thialiana Leaves. Polish Journal of Environmental Studies, 2018, 27, 967-978.	1.2	5
18	The SPATULA transcription factor regulates seed oil content by controlling seed specific genes in Arabidopsis thaliana. Plant Growth Regulation, 2017, 82, 111-121.	3.4	14

Bohan Liu

#	Article	IF	CITATIONS
19	Biochemical responses and ultrastructural changes in ethylene insensitive mutants of Arabidopsis thialiana subjected to bisphenol A exposure. Ecotoxicology and Environmental Safety, 2017, 144, 62-71.	6.0	39
20	AtGIS, a C2H2 zinc-finger transcription factor from Arabidopsis regulates glandular trichome development through GA signaling in tobacco. Biochemical and Biophysical Research Communications, 2017, 483, 209-215.	2.1	40
21	Multiple phytohormones promote root hair elongation by regulating a similar set of genes in the root epidermis in Arabidopsis. Journal of Experimental Botany, 2016, 67, 6363-6372.	4.8	78
22	Toxicological effects of bisphenol A on growth and antioxidant defense system in Oryza sativa as revealed by ultrastructure analysis. Ecotoxicology and Environmental Safety, 2016, 124, 277-284.	6.0	62
23	Linkage Mapping of Stem Saccharification Digestibility in Rice. PLoS ONE, 2016, 11, e0159117.	2.5	6
24	The Arabidopsis Gene zinc finger protein 3(ZFP3) Is Involved in Salt Stress and Osmotic Stress Response. PLoS ONE, 2016, 11, e0168367.	2.5	53
25	ABA-induced CCCH tandem zinc finger protein OsC3H47 decreases ABA sensitivity and promotes drought tolerance in Oryza sativa. Biochemical and Biophysical Research Communications, 2015, 464, 33-37.	2.1	52
26	Characterization of <i>Rolled and Erect Leaf 1</i> in regulating leave morphology in rice. Journal of Experimental Botany, 2015, 66, 6047-6058.	4.8	52
27	Involvement of C2H2 zinc finger proteins in the regulation of epidermal cell fate determination in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2014, 56, 1112-1117.	8.5	39