List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376324/publications.pdf Version: 2024-02-01

ΡΑΝΟΥ Δ ΗΛΙΙ

#	Article	IF	CITATIONS
1	TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO Journal, 2000, 19, 6778-6791.	3.5	623
2	The β2-adrenergic receptor interacts with the Na+/H+-exchanger regulatory factor to control Na+/H+ exchange. Nature, 1998, 392, 626-630.	13.7	566
3	Fine-tuning of GPCR activity by receptor-interacting proteins. Nature Reviews Molecular Cell Biology, 2009, 10, 819-830.	16.1	413
4	A C-terminal motif found in the Â2-adrenergic receptor, P2Y1 receptor and cystic fibrosis transmembrane conductance regulator determines binding to the Na+/H+ exchanger regulatory factor family of PDZ proteins. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 8496-8501.	3.3	393
5	International Union of Basic and Clinical Pharmacology. XCIV. Adhesion G Protein–Coupled Receptors. Pharmacological Reviews, 2015, 67, 338-367.	7.1	392
6	Heterodimerization of G Protein-Coupled Receptors: Specificity and Functional Significance. Pharmacological Reviews, 2005, 57, 289-298.	7.1	338
7	Heptahelical Receptor Signaling: Beyond the G Protein Paradigm. Journal of Cell Biology, 1999, 145, 927-932.	2.3	297
8	Platelet-Derived Growth Factor Receptor Association with Na + /H + Exchanger Regulatory Factor Potentiates Receptor Activity. Molecular and Cellular Biology, 2000, 20, 8352-8363.	1.1	201
9	Regulation of G Protein–Coupled Receptor Signaling by Scaffold Proteins. Circulation Research, 2002, 91, 672-680.	2.0	201
10	GTPase Activating Specificity of RGS12 and Binding Specificity of an Alternatively Spliced PDZ (PSD-95/Dlg/ZO-1) Domain. Journal of Biological Chemistry, 1998, 273, 17749-17755.	1.6	194
11	GPR37 and GPR37L1 are receptors for the neuroprotective and glioprotective factors prosaptide and prosaposin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9529-9534.	3.3	162
12	THE ASSOCIATION OF NHERF ADAPTOR PROTEINS WITH G PROTEIN–COUPLED RECEPTORS AND RECEPTOR TYROSINE KINASES. Annual Review of Physiology, 2006, 68, 491-505.	5.6	160
13	β1-Adrenergic Receptor Association with PSD-95. Journal of Biological Chemistry, 2000, 275, 38659-38666.	1.6	155
14	The N Terminus of the Adhesion G Protein-coupled Receptor GPR56 Controls Receptor Signaling Activity. Journal of Biological Chemistry, 2011, 286, 28914-28921.	1.6	153
15	The G Protein-coupled Receptor Kinase 2 Is a Microtubule-associated Protein Kinase That Phosphorylates Tubulin. Journal of Biological Chemistry, 1998, 273, 12316-12324.	1.6	144
16	Cell Surface Expression of $\hat{l}\pm 1D$ -Adrenergic Receptors Is Controlled by Heterodimerization with $\hat{l}\pm 1B$ -Adrenergic Receptors. Journal of Biological Chemistry, 2004, 279, 15541-15549.	1.6	143
17	Differential Surface Expression and Phosphorylation of the N-Methyl-D-aspartate Receptor Subunits NR1 and NR2 in Cultured Hippocampal Neurons. Journal of Biological Chemistry, 1997, 272, 4135-4140.	1.6	134
18	Identification of the endophilins (SH3p4/p8/p13) as novel binding partners for the beta 1-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 12559-12564.	3.3	134

RANDY A HALL

#	Article	IF	CITATIONS
19	G Protein-coupled Receptor Kinase 6A Phosphorylates the Na+/H+ Exchanger Regulatory Factor via a PDZ Domain-mediated Interaction. Journal of Biological Chemistry, 1999, 274, 24328-24334.	1.6	129
20	Heterodimerization with β2-Adrenergic Receptors Promotes Surface Expression and Functional Activity of α1D-Adrenergic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 16-23.	1.3	124
21	β1-Adrenergic Receptor Association with the Synaptic Scaffolding Protein Membrane-associated Guanylate Kinase Inverted-2 (MAGI-2). Journal of Biological Chemistry, 2001, 276, 41310-41317.	1.6	121
22	Differential synaptology of vGluT2-containing thalamostriatal afferents between the patch and matrix compartments in rats. Journal of Comparative Neurology, 2006, 499, 231-243.	0.9	119
23	LPA2 receptor mediates mitogenic signals in human colon cancer cells. American Journal of Physiology - Cell Physiology, 2005, 289, C2-C11.	2.1	118
24	PTEN recruitment controls synaptic and cognitive function in Alzheimer's models. Nature Neuroscience, 2016, 19, 443-453.	7.1	118
25	Amitriptyline is a TrkA and TrkB Receptor Agonist that Promotes TrkA/TrkB Heterodimerization and Has Potent Neurotrophic Activity. Chemistry and Biology, 2009, 16, 644-656.	6.2	117
26	Heterodimerization of α2A- and β1-Adrenergic Receptors. Journal of Biological Chemistry, 2003, 278, 10770-10777.	1.6	112
27	Adhesion G Protein-Coupled Receptors: Signaling, Pharmacology, and Mechanisms of Activation. Molecular Pharmacology, 2012, 82, 777-783.	1.0	108
28	JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Molecular Biology of the Cell, 2013, 24, 2849-2860.	0.9	108
29	Hetero-oligomerization between GABAA and GABAB Receptors Regulates GABAB Receptor Trafficking. Journal of Biological Chemistry, 2004, 279, 18840-18850.	1.6	106
30	Proteomic Analysis of \hat{l}^21 -Adrenergic Receptor Interactions with PDZ Scaffold Proteins. Journal of Biological Chemistry, 2006, 281, 2820-2827.	1.6	105
31	Olfactory receptor surface expression is driven by association with the Â2-adrenergic receptor. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 13672-13676.	3.3	102
32	The protective role of prosaposin and its receptors in the nervous system. Brain Research, 2014, 1585, 1-12.	1.1	101
33	Oligomerization of NHERF-1 and NHERF-2 PDZ Domains:  Differential Regulation by Association with Receptor Carboxyl-Termini and by Phosphorylation. Biochemistry, 2001, 40, 8572-8580.	1.2	100
34	Stalk-dependent and Stalk-independent Signaling by the Adhesion G Protein-coupled Receptors GPR56 (ADGRG1) and BAI1 (ADGRB1). Journal of Biological Chemistry, 2016, 291, 3385-3394.	1.6	100
35	Differential synaptic plasticity of the corticostriatal and thalamostriatal systems in an MPTPâ€ŧreated monkey model of parkinsonism. European Journal of Neuroscience, 2008, 27, 1647-1658.	1.2	97
36	Subtype-Specific Dimerization of α1-Adrenoceptors: Effects on Receptor Expression and Pharmacological Properties. Molecular Pharmacology, 2003, 64, 1379-1390.	1.0	93

RANDY A HALL

#	Article	IF	CITATIONS
37	Cocaine- and amphetamine-regulated transcript (CART) peptide activates the extracellular signal-regulated kinase (ERK) pathway in AtT20 cells via putative G-protein coupled receptors. Neuroscience Letters, 2005, 384, 198-202.	1.0	92
38	P2Y1 receptor signaling is controlled by interaction with the PDZ scaffold NHERF-2. Proceedings of the United States of America, 2005, 102, 8042-8047.	3.3	88
39	Adhesion G Protein–Coupled Receptors as Drug Targets. Annual Review of Pharmacology and Toxicology, 2018, 58, 429-449.	4.2	87
40	Stable maintenance of glutamate receptors and other synaptic components in long-term hippocampal slices. Hippocampus, 1995, 5, 425-439.	0.9	86
41	Brain-specific Angiogenesis Inhibitor-1 Signaling, Regulation, and Enrichment in the Postsynaptic Density. Journal of Biological Chemistry, 2013, 288, 22248-22256.	1.6	84
42	GABAB Receptor Association with the PDZ Scaffold Mupp1 Alters Receptor Stability and Function. Journal of Biological Chemistry, 2007, 282, 4162-4171.	1.6	76
43	Monitoring Protein-Protein Interactions between the Mammalian Integral Membrane Transporters and PDZ-interacting Partners Using a Modified Split-ubiquitin Membrane Yeast Two-hybrid System. Molecular and Cellular Proteomics, 2008, 7, 1362-1377.	2.5	71
44	BAl1 regulates spatial learning and synaptic plasticity in the hippocampus. Journal of Clinical Investigation, 2015, 125, 1497-1508.	3.9	71
45	Quantitation of AMPA receptor surface expression in cultured hippocampal neurons. Neuroscience, 1997, 78, 361-371.	1.1	70
46	Heterodimers of α1B- and α1D-Adrenergic Receptors Form a Single Functional Entity. Molecular Pharmacology, 2006, 69, 45-55.	1.0	67
47	Subcellular and subsynaptic localization of group I metabotropic glutamate receptors in the monkey subthalamic nucleus. Journal of Comparative Neurology, 2004, 474, 589-602.	0.9	65
48	GPR37 Surface Expression Enhancement via N-Terminal Truncation or Proteinâ^'Protein Interactions. Biochemistry, 2009, 48, 10286-10297.	1.2	63
49	Evidence that High―and Lowâ€Affinity DLâ€Î±â€Aminoâ€3â€Hydroxyâ€5â€Methylisoxazoleâ€4â€Propionic A Sites Reflect Membraneâ€Dependent States of a Single Receptor. Journal of Neurochemistry, 1992, 59, 1997-2004.	cid (AMPA 2.1) Binding 62
50	Genome-wide Functional Annotation of Dual-Specificity Protein- and Lipid-Binding Modules that Regulate Protein Interactions. Molecular Cell, 2012, 46, 226-237.	4.5	62
51	Phosphorylation and Cell Cycle-dependent Regulation of Na+/H+ Exchanger Regulatory Factor-1 by Cdc2 Kinase. Journal of Biological Chemistry, 2001, 276, 41559-41565.	1.6	61
52	β-Adrenergic receptors and their interacting proteins. Seminars in Cell and Developmental Biology, 2004, 15, 281-288.	2.3	61
53	Endothelial cell specific adhesion molecule (ESAM) localizes to platelet–platelet contacts and regulates thrombus formation in vivo. Journal of Thrombosis and Haemostasis, 2009, 7, 1886-1896.	1.9	61
54	MAGI-3 Competes With NHERF-2 to Negatively Regulate LPA2 Receptor Signaling in Colon Cancer Cells. Gastroenterology, 2011, 140, 924-934.	0.6	61

#	Article	IF	CITATIONS
55	Interaction with Cystic Fibrosis Transmembrane Conductance Regulator-associated Ligand (CAL) Inhibits β1-Adrenergic Receptor Surface Expression. Journal of Biological Chemistry, 2004, 279, 50190-50196.	1.6	60
56	Na/H Exchanger Regulatory Factors Control Parathyroid Hormone Receptor Signaling by Facilitating Differential Activation of GI± Protein Subunits. Journal of Biological Chemistry, 2010, 285, 26976-26986.	1.6	58
57	Glycosylation of β1-adrenergic receptors regulates receptor surface expression and dimerization. Biochemical and Biophysical Research Communications, 2002, 297, 565-572.	1.0	54
58	The BAI subfamily of adhesion GPCRs: synaptic regulation and beyond. Trends in Pharmacological Sciences, 2014, 35, 208-215.	4.0	54
59	MAGI-3 regulates LPA-induced activation of Erk and RhoA. Cellular Signalling, 2007, 19, 261-268.	1.7	53
60	Protein Kinase Cα Promotes Cell Migration through a PDZ-Dependent Interaction with its Novel Substrate Discs Large Homolog 1 (DLG1). Journal of Biological Chemistry, 2011, 286, 43559-43568.	1.6	53
61	Studying Protein–Protein Interactions via Blot Overlay or Far Western Blot. , 2004, 261, 167-174.		51
62	Syntrophins Regulate α1D-Adrenergic Receptors through a PDZ Domain-mediated Interaction. Journal of Biological Chemistry, 2006, 281, 12414-12420.	1.6	49
63	Erbin Enhances Voltage-Dependent Facilitation of Cav1.3 Ca2+ Channels through Relief of an Autoinhibitory Domain in the Cav1.3 Â1 Subunit. Journal of Neuroscience, 2007, 27, 1374-1385.	1.7	47
64	The PDZ Scaffold NHERF-2 Interacts with mGluR5 and Regulates Receptor Activity. Journal of Biological Chemistry, 2006, 281, 29949-29961.	1.6	46
65	Enhancement of the surface expression of G protein-coupled receptors. Trends in Biotechnology, 2009, 27, 541-545.	4.9	44
66	CART peptide stimulation of G protein-mediated signaling in differentiated PC12 Cells: Identification of PACAP 6–38 as a CART receptor antagonist. Neuropeptides, 2011, 45, 351-358.	0.9	44
67	A New Human NHERF1 Mutation Decreases Renal Phosphate Transporter NPT2a Expression by a PTH-Independent Mechanism. PLoS ONE, 2012, 7, e34764.	1.1	44
68	Adenosine A _{2A} receptor in the monkey basal ganglia: Ultrastructural localization and colocalization with the metabotropic glutamate receptor 5 in the striatum. Journal of Comparative Neurology, 2012, 520, 570-589.	0.9	44
69	Mouse telencephalon exhibits an age-related decrease in glutamate (AMPA) receptors but no change in nerve terminal markers. Brain Research, 1992, 589, 320-326.	1.1	41
70	Cyclothiazide decreases [3HAMPA binding to rat brain membranes: evidence that AMPA receptor desensitization increases agonist affinity. Brain Research, 1993, 628, 345-348.	1.1	41
71	Binding to Na+/H+ exchanger regulatory factor 2 (NHERF2) affects trafficking and function of the enteropathogenic Escherichia coli type III secretion system effectors Map, EspI and NleH. Cellular Microbiology, 2010, 12, 1718-1731.	1.1	41
72	Agonist-induced polarized trafficking and surface expression of the adenosine 2b receptor in intestinal epithelial cells: role of SNARE proteins. American Journal of Physiology - Renal Physiology, 2004, 287, G1100-G1107.	1.6	40

#	Article	IF	CITATIONS
73	Specificity of Olfactory Receptor Interactions with Other G Protein-coupled Receptors. Journal of Biological Chemistry, 2007, 282, 19042-19051.	1.6	40
74	κ Opioid Receptor Interacts with Na+/H+-exchanger Regulatory Factor-1/Ezrin-Radixin-Moesin-binding Phosphoprotein-50 (NHERF-1/EBP50) to Stimulate Na+/H+ Exchange Independent of Gi/Go Proteins. Journal of Biological Chemistry, 2004, 279, 25002-25009.	1.6	39
75	Protective effects of GPR37 <i>via</i> regulation of inflammation and multiple cell death pathways after ischemic stroke in mice. FASEB Journal, 2019, 33, 10680-10691.	0.2	39
76	GPR37L1 modulates seizure susceptibility: Evidence from mouse studies and analyses of a human GPR37L1 variant. Neurobiology of Disease, 2017, 106, 181-190.	2.1	38
77	Cell cycle-dependent phosphorylation of Disabled-2 by cdc2. Oncogene, 2003, 22, 4524-4530.	2.6	37
78	Ultrastructural localization of <scp>DREADD</scp> s in monkeys. European Journal of Neuroscience, 2019, 50, 2801-2813.	1.2	37
79	The Protein Scaffold NHERF-1 Controls the Amplitude and Duration of Localized Protein Kinase D Activity. Journal of Biological Chemistry, 2009, 284, 24653-24661.	1.6	36
80	Localization and Expression of Group I Metabotropic Glutamate Receptors in the Mouse Striatum, Globus Pallidus, and Subthalamic Nucleus: Regulatory Effects of MPTP Treatment and Constitutive Homer Deletion. Journal of Neuroscience, 2007, 27, 6249-6260.	1.7	35
81	Mice lacking Gpr37 exhibit decreased expression of the myelin-associated glycoprotein MAG and increased susceptibility to demyelination. Neuroscience, 2017, 358, 49-57.	1.1	32
82	Disease-associated extracellular loop mutations in the adhesion G protein-coupled receptor G1 (ADGRG1; GPR56) differentially regulate downstream signaling. Journal of Biological Chemistry, 2017, 292, 9711-9720.	1.6	31
83	Interaction between metabotropic glutamate receptor 7 and alpha tubulin. Journal of Neurochemistry, 2002, 80, 980-988.	2.1	30
84	A C-terminal class I PDZ binding motif of Espl/NleA modulates the virulence of attaching and effacing Escherichia coli and Citrobacter rodentium. Cellular Microbiology, 2007, 10, 071103031556003-???.	1.1	30
85	Olfactory receptor trafficking to the plasma membrane. Cellular and Molecular Life Sciences, 2008, 65, 2289-2295.	2.4	29
86	Distinct distributions of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits and a related 53,000 Mr antigen (GR53) in brain tissue. Neuroscience, 1996, 74, 707-721.	1.1	28
87	Novel Interaction between the M4 Muscarinic Acetylcholine Receptor and Elongation Factor 1A2. Journal of Biological Chemistry, 2002, 277, 29268-29274.	1.6	28
88	α2C-Adrenergic Receptors Exhibit Enhanced Surface Expression and Signaling upon Association with β2-Adrenergic Receptors. Journal of Pharmacology and Experimental Therapeutics, 2006, 318, 974-981.	1.3	28
89	AMPA Receptor Development in Rat Telencephalon: [³ H]AMPA Binding and Western Blot Studies. Journal of Neurochemistry, 1994, 63, 1658-1665.	2.1	27
90	Elucidation of a Novel Extracellular Calcium-binding Site on Metabotropic Glutamate Receptor 1α (mGluR1α) That Controls Receptor Activation*. Journal of Biological Chemistry, 2010, 285, 33463-33474.	1.6	27

RANDY A HALL

#	Article	IF	CITATIONS
91	Autonomic Modulation of Olfactory Signaling. Science Signaling, 2011, 4, pe1.	1.6	27
92	Role of SAP97 Protein in the Regulation of Corticotropin-releasing Factor Receptor 1 Endocytosis and Extracellular Signal-regulated Kinase 1/2 Signaling. Journal of Biological Chemistry, 2013, 288, 15023-15034.	1.6	26
93	An electron microscope immunocytochemical study of GABAB R2 receptors in the monkey basal ganglia: A comparative analysis with GABAB R1 receptor distribution. Journal of Comparative Neurology, 2004, 476, 65-79.	0.9	25
94	A disease-associated mutation in the adhesion GPCR BAI2 (<i>ADGRB2</i>) increases receptor signaling activity. Human Mutation, 2017, 38, 1751-1760.	1.1	24
95	Extracellular Calcium Modulates Actions of Orthosteric and Allosteric Ligands on Metabotropic Glutamate Receptor 1α. Journal of Biological Chemistry, 2014, 289, 1649-1661.	1.6	22
96	The tyrosine phosphatase PTPN13/FAP-1 links calpain-2, TBI and tau tyrosine phosphorylation. Scientific Reports, 2017, 7, 11771.	1.6	22
97	Versatile Signaling Activity of Adhesion GPCRs. Handbook of Experimental Pharmacology, 2016, 234, 127-146.	0.9	21
98	Evidence against enhanced glutamate transport in the anticonvulsant mechanism of the ketogenic diet. Epilepsy Research, 2007, 74, 232-236.	0.8	19
99	Effects of heparin on the properties of solubilized and reconstituted rat brain AMPA receptors. Neuroscience Letters, 1996, 217, 179-183.	1.0	18
100	Heparin modulates the single channel kinetics of reconstituted AMPA receptors from rat brain. Synapse, 1999, 31, 203-209.	0.6	17
101	Single channel recordings of reconstituted AMPA receptors reveal low and high conductance states. Neuroscience Letters, 1993, 150, 80-84.	1.0	16
102	The expanding functional roles and signaling mechanisms of adhesion G protein–coupled receptors. Annals of the New York Academy of Sciences, 2019, 1456, 5-25.	1.8	16
103	GABAB receptors in the centromedian/parafascicular thalamic nuclear complex: An ultrastructural analysis of GABABR1 and GABABR2 in the monkey thalamus. Journal of Comparative Neurology, 2006, 496, 269-287.	0.9	15
104	Functional Reconstitution of α-Amino-3-Hydroxy-5-Methylisoxazole-4-Propionate (AMPA) Receptors from Rat Brain. Journal of Neurochemistry, 1992, 59, 1979-1982.	2.1	14
105	Systematic family-wide analysis of sodium bicarbonate cotransporter NBCn1/SLC4A7 interactions with PDZ scaffold proteins. Physiological Reports, 2014, 2, e12016.	0.7	14
106	Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiological Reviews, 2022, 102, 1587-1624.	13.1	14
107	Kainate binding to the AMPA receptor in rat brain. Neurochemical Research, 1994, 19, 777-782.	1.6	13
108	Design of a selective chemical probe for class I PDZ domains. Bioorganic and Medicinal Chemistry Letters, 2007, 17, 546-548.	1.0	13

#	Article	IF	CITATIONS
109	Astrocytic and neuronal localization of the scaffold protein Na+/H+ exchanger regulatory factor 2 (NHERF-2) in mouse brain. Journal of Comparative Neurology, 2006, 494, 752-762.	0.9	12
110	GLAST stability and activity are enhanced by interaction with the PDZ scaffold NHERF-2. Neuroscience Letters, 2011, 487, 3-7.	1.0	12
111	Group II metabotropic glutamate receptor interactions with NHERF scaffold proteins: Implications for receptor localization in brain. Neuroscience, 2017, 353, 58-75.	1.1	11
112	Ultraviolet radiation, thiol reagents, and solubilization enhance AMPA receptor binding affinity via a common mechanism. Neurochemical Research, 1996, 21, 963-968.	1.6	9
113	Identification of novel G protein-coupled receptor-interacting proteins. Methods in Enzymology, 2002, 343, 611-621.	0.4	9
114	Chronic loss of noradrenergic tone produces βâ€arrestin2â€mediated cocaine hypersensitivity and alters cellular <scp>D</scp> 2 responses in the nucleus accumbens. Addiction Biology, 2016, 21, 35-48.	1.4	9
115	Olfactory Receptor Localization and Function: An Emerging Role for GPCR Heterodimerization. Molecular Interventions: Pharmacological Perspectives From Biology, Chemistry and Genomics, 2004, 4, 321-322.	3.4	9
116	Mice lacking full length Adgrb1 (Bai1) exhibit social deficits, increased seizure susceptibility, and altered brain development. Experimental Neurology, 2022, 351, 113994.	2.0	9
117	Studying Protein-Protein Interactions via Blot Overlay/Far Western Blot. Methods in Molecular Biology, 2015, 1278, 371-379.	0.4	8
118	Dâ€AKAP2:PKA RII:PDZK1 ternary complex structure: Insights from the nucleation of a polyvalent scaffold. Protein Science, 2015, 24, 105-116.	3.1	8
119	Quantitative Proteomics Reveal an Altered Pattern of Protein Expression in Brain Tissue from Mice Lacking GPR37 and GPR37L1. Journal of Proteome Research, 2020, 19, 744-755.	1.8	8
120	Olfactory Receptor Interactions with Other Receptors. Annals of the New York Academy of Sciences, 2009, 1170, 147-149.	1.8	7
121	SAP97 promotes the stability of Na _x channels at the plasma membrane. FEBS Letters, 2012, 586, 3805-3812.	1.3	6
122	GPR37 modulates progenitor cell dynamics in a mouse model of ischemic stroke. Experimental Neurology, 2021, 342, 113719.	2.0	5
123	Chronic loss of Noradrenergic Tone Produces β-Arrestin2-Mediated Cocaine Hypersensitivity and a GαI to Gαs switch in D2 Receptor Coupling in the Nucleus Accumbens. , 2014, , 111.		1
124	Localized PKD activity at PDZ domain ontaining scaffolds. FASEB Journal, 2008, 22, 1048.13.	0.2	0
125	Detection and Characterization of Receptor Interactions with PDZ Domains. Methods in Molecular Biology, 2011, 756, 345-356.	0.4	0
126	PDZ interactions between PHLPP phosphatases and the NHERF scaffold. FASEB Journal, 2012, 26, 761.26.	0.2	0