Ilya Ruvinsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6376063/publications.pdf

Version: 2024-02-01

414414 394421 34 1,608 19 32 citations g-index h-index papers 36 36 36 2106 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	ODR-1 acts in AWB neurons to determine the sexual identity of pheromone blends. MicroPublication Biology, 2022, 2022, .	0.1	О
2	The roles of several sensory neurons and the feedback from egg laying in regulating the germline response to a sex pheromone in hermaphrodites MicroPublication Biology, 2022, 2022, .	0.1	1
3	A male pheromone that improves the quality of the oogenic germline. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2015576119.	7.1	15
4	Inferring temporal organization of postembryonic development from high-content behavioral tracking. Developmental Biology, 2021, 475, 54-64.	2.0	11
5	An excreted small molecule promotes C. elegans reproductive development and aging. Nature Chemical Biology, 2019, 15, 838-845.	8.0	41
6	Dynamic Regulation of Adult-Specific Functions of the Nervous System by Signaling from the Reproductive System. Current Biology, 2019, 29, 4116-4123.e3.	3.9	24
7	Coordinated Behavioral and Physiological Responses to a Social Signal Are Regulated by a Shared Neuronal Circuit. Current Biology, 2019, 29, 4108-4115.e4.	3.9	28
8	A primer on pheromone signaling in Caenorhabditis elegans for systems biologists. Current Opinion in Systems Biology, 2019, 13, 23-30.	2.6	31
9	Counteracting Ascarosides Act through Distinct Neurons to Determine the Sexual Identity of C.Âelegans Pheromones. Current Biology, 2017, 27, 2589-2599.e3.	3.9	43
10	Sexually Antagonistic Male Signals Manipulate Germline and Soma of C.Âelegans Hermaphrodites. Current Biology, 2016, 26, 2827-2833.	3.9	64
11	Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS ONE, 2015, 10, e0145925.	2.5	23
12	Phylum-Level Conservation of Regulatory Information in Nematodes despite Extensive Non-coding Sequence Divergence. PLoS Genetics, 2015, 11, e1005268.	3.5	11
13	Sex Pheromones of C. elegans Males Prime the Female Reproductive System and Ameliorate the Effects of Heat Stress. PLoS Genetics, 2015, 11, e1005729.	3.5	32
14	Pervasive Divergence of Transcriptional Gene Regulation in Caenorhabditis Nematodes. PLoS Genetics, 2014, 10, e1004435.	3.5	25
15	Balanced Trade-Offs between Alternative Strategies Shape the Response of C. elegans Reproduction to Chronic Heat Stress. PLoS ONE, 2014, 9, e105513.	2.5	31
16	Tempo and Mode in Evolution of Transcriptional Regulation. PLoS Genetics, 2012, 8, e1002432.	3.5	60
17	Family Size and Turnover Rates among Several Classes of Small Non–Protein-Coding RNA Genes in Caenorhabditis Nematodes. Genome Biology and Evolution, 2012, 4, 565-574.	2.5	5
18	Macro-level Modeling of the Response of C. elegans Reproduction to Chronic Heat Stress. PLoS Computational Biology, 2012, 8, e1002338.	3.2	33

#	Article	IF	CITATIONS
19	Comparative studies of gene expression and the evolution of gene regulation. Nature Reviews Genetics, 2012, 13, 505-516.	16.3	399
20	Evidence That Purifying Selection Acts on Promoter Sequences. Genetics, 2011, 189, 1121-1126.	2.9	3
21	Distinct Functional Constraints Partition Sequence Conservation in a cis-Regulatory Element. PLoS Genetics, 2011, 7, e1002095.	3.5	25
22	Functional Conservation of Cis-Regulatory Elements of Heat-Shock Genes over Long Evolutionary Distances. PLoS ONE, 2011, 6, e22677.	2.5	6
23	Computational prediction of Caenorhabditis box H/ACA snoRNAs using genomic properties of their host genes. Rna, 2010, 16, 290-298.	3.5	7
24	Comparing nematode enhancers: conservation, divergence, and coâ€evolution. FASEB Journal, 2010, 24, 902.4.	0.5	0
25	Detecting heterozygosity in shotgun genome assemblies: Lessons from obligately outcrossing nematodes. Genome Research, 2009, 19, 470-480.	5.5	84
26	Conservation of linkage and evolution of developmental function within the Tbx2/3/4/5 subfamily of T-box genes: implications for the origin of vertebrate limbs. Development Genes and Evolution, 2008, 218, 613-628.	0.9	60
27	Detection of broadly expressed neuronal genes in C. elegans. Developmental Biology, 2007, 302, 617-626.	2.0	34
28	Genetics analysis of mouse mutations Abnormal feet and tail and rough coat, which cause developmental abnormalities and alopecia. Mammalian Genome, 2002, 13, 675-679.	2.2	11
29	tbx20 , a new vertebrate T-box gene expressed in the cranial motor neurons and developing cardiovascular structures in zebrafish. Mechanisms of Development, 2000, 95, 253-258.	1.7	80
30	Phylogenetic Analysis of T-Box Genes Demonstrates the Importance of Amphioxus for Understanding Evolution of the Vertebrate Genome. Genetics, 2000, 156, 1249-1257.	2.9	60
31	Characterization of the zebrafish tbx16 gene and evolution of the vertebrate T-box family. Development Genes and Evolution, 1998, 208, 94-99.	0.9	65
32	Newly Identified Paralogous Groups on Mouse Chromosomes 5 and 11 Reveal the Age of a T-Box Cluster Duplication. Genomics, 1997, 40, 262-266.	2.9	44
33	Phylogenetic Relationships among Bufonoid Frogs (Anura: Neobatrachia) Inferred from Mitochondrial DNA Sequences. Molecular Phylogenetics and Evolution, 1996, 5, 533-547.	2.7	77
34	Evolution of Mouse <i>T-box</i> Genes by Tandem Duplication and Cluster Dispersion. Genetics, 1996, 144, 249-254.	2.9	173