Aobo Ren

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/63757/publications.pdf Version: 2024-02-01

AORO REN

#	Article	IF	CITATIONS
1	Economical preparation of porous polyacrylonitrile-derived carbon/molybdenum disulfide composite anode for high-performance lithium-ion battery. Journal of Materials Science, 2022, 57, 1246-1260.	3.7	2
2	Plasmonic MXene Nanoparticle-Enabled High-Performance Two-Dimensional MoS ₂ Photodetectors. ACS Applied Materials & Interfaces, 2022, 14, 8243-8250.	8.0	18
3	Influence of Halide Choice on Formation of Lowâ€Dimensional Perovskite Interlayer in Efficient Perovskite Solar Cells. Energy and Environmental Materials, 2022, 5, 670-682.	12.8	9
4	Broadband Visibleâ^'Near Infrared Twoâ€Dimensional WSe ₂ /In ₂ Se ₃ Photodetector for Underwater Optical Communications. Advanced Optical Materials, 2022, 10, .	7.3	28
5	Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS Nano, 2022, 16, 7116-7143.	14.6	32
6	Ultra-narrow-band Infrared Absorbers Based on Surface Plasmon Resonance. Plasmonics, 2021, 16, 1165-1174.	3.4	6
7	Emerging light-emitting diodes for next-generation data communications. Nature Electronics, 2021, 4, 559-572.	26.0	102
8	Highâ€Performance Xâ€Ray Detector Based on Liquid Diffused Separation Induced Cs ₃ Bi ₂ I ₉ Single Crystal. Advanced Optical Materials, 2021, 9, 2101351.	7.3	32
9	Laser scribing of Cd2SnO4-based CdTe polycrystalline solar cells. Renewable Energy, 2020, 145, 133-140.	8.9	5
10	Single Crystal CdSe X-ray Detectors with Ultra-High Sensitivity and Low Detection Limit. ACS Applied Materials & Interfaces, 2020, 12, 56126-56134.	8.0	10
11	Nanolasers Based on 2D Materials. Laser and Photonics Reviews, 2020, 14, 2000271.	8.7	47
12	MXene-Modulated Electrode/SnO ₂ Interface Boosting Charge Transport in Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2020, 12, 53973-53983.	8.0	71
13	Enhanced Spatial Light Confinement of All Inorganic Perovskite Photodetectors Based on Hybrid Plasmonic Nanostructures. Small, 2020, 16, e2004234.	10.0	17
14	Nanolasers: Nanolasers Based on 2D Materials (Laser Photonics Rev. 14(12)/2020). Laser and Photonics Reviews, 2020, 14, 2070066.	8.7	1
15	Efficient Perovskite Solar Modules with Minimized Nonradiative Recombination and Local Carrier Transport Losses. Joule, 2020, 4, 1263-1277.	24.0	93
16	Recent Advances in 2D MXenes for Photodetection. Advanced Functional Materials, 2020, 30, 2000907.	14.9	143
17	Direct laser-patterned MXene–perovskite image sensor arrays for visible-near infrared photodetection. Materials Horizons, 2020, 7, 1901-1911.	12.2	68
18	Flexible and Selfâ€Powered Photodetector Arrays Based on Allâ€Inorganic CsPbBr ₃ Quantum Dots. Advanced Materials, 2020, 32, e2000004.	21.0	134

Aobo Ren

#	Article	IF	CITATIONS
19	Spatially Resolved Identification of Shunt Defects in Thin Film Solar Cells via Current Transport Efficiency Imaging Combined with 3D Finite Element Modeling. Solar Rrl, 2019, 3, 1800342.	5.8	9
20	A luminescence-based interpolation method for series resistance imaging in thin film solar cells. Japanese Journal of Applied Physics, 2019, 58, 050908.	1.5	4
21	Recent progress of Ill–V quantum dot infrared photodetectors on silicon. Journal of Materials Chemistry C, 2019, 7, 14441-14453.	5.5	43
22	Determination of Current Transport Efficiency Map by Optoelectronic Reciprocity Relation in CdTe Solar Cells. IEEE Journal of Photovoltaics, 2018, 8, 1767-1772.	2.5	7
23	The study of oxygen concentration in the CdTe thin film prepared by vapor transport deposition for CdTe photovoltaic devices. Journal of Materials Science: Materials in Electronics, 2017, 28, 9442-9449.	2.2	9
24	An approach to ZnTe:O intermediate-band photovoltaic materials. Solar Energy, 2017, 157, 707-712.	6.1	14
25	Synthesis and Characterization of CZTS Thin Films by Sol-Gel Method without Sulfurization. International Journal of Photoenergy, 2014, 2014, 1-6.	2.5	14