Jos L Tirado

List of Publications by Citations

Source: https://exaly.com/author-pdf/6375536/jose-l-tirado-publications-by-citations.pdf

Version: 2024-04-25

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 391
 11,946
 56
 91

 papers
 citations
 h-index
 g-index

 413
 12,700
 5.6
 6.39

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
391	NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. <i>Chemistry of Materials</i> , 2002 , 14, 2847-2848	9.6	434
390	Carbon black: a promising electrode material for sodium-ion batteries. <i>Electrochemistry Communications</i> , 2001 , 3, 639-642	5.1	320
389	Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. <i>Chemistry of Materials</i> , 2009 , 21, 63-67	9.6	300
388	Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. <i>Electrochemical and Solid-State Letters</i> , 2005 , 8, A222		288
387	CoFe2O4 and NiFe2O4 synthesized by solgel procedures for their use as anode materials for Li ion batteries. <i>Journal of Power Sources</i> , 2007 , 172, 379-387	8.9	286
386	Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel. <i>Chemistry of Materials</i> , 2004 , 16, 5721-5725	9.6	280
385	Cation distribution and chemical deintercalation of Li1-xNi1+xO2. <i>Materials Research Bulletin</i> , 1990 , 25, 623-630	5.1	242
384	Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. <i>Materials Science and Engineering Reports</i> , 2003 , 40, 103-136	30.9	229
383	Solgel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. <i>Electrochimica Acta</i> , 2007 , 52, 7986-7995	6.7	135
382	TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. <i>Electrochimica Acta</i> , 2009 , 54, 4262-4268	6.7	130
381	Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1\(\text{Li1}\(\text{Ni0.5Mn1.5O4 spinel}.\) Electrochimica Acta, 2002 , 47, 1829-1835	6.7	127
380	Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. <i>Carbon</i> , 2000 , 38, 1031-1041	10.4	127
379	Electrochemical reaction of lithium with the CoSb3 skutterudite. <i>Journal of Materials Chemistry</i> , 1999 , 9, 2517-2521		125
378	Benefits of Chromium Substitution in Na3V2(PO4)3 as a Potential Candidate for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2015 , 2, 995-1002	4.3	119
377	Effect of Iron Substitution in the Electrochemical Performance of Na3V2(PO4)3as Cathode for Na-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A3077-A3083	3.9	119
376	Structure and Electrochemical Properties of Boron-Doped LiCoO2. <i>Journal of Solid State Chemistry</i> , 1997 , 134, 265-273	3.3	119
375	Improvement of the Electrochemical Performance of LiCoPO[sub 4] 5 V Material Using a Novel Synthesis Procedure. <i>Electrochemical and Solid-State Letters</i> , 2002 , 5, A234		118

(2010-2004)

374	X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. <i>Journal of Electroanalytical Chemistry</i> , 2004 , 566, 187-192	4.1	117
373	Electrochemical reaction of lithium with CoP3. <i>Journal of Power Sources</i> , 2002 , 109, 308-312	8.9	115
372	Submicronic particles of manganese carbonate prepared in reverse micelles: A new electrode material for lithium-ion batteries. <i>Electrochemistry Communications</i> , 2007 , 9, 1744-1748	5.1	112
371	Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A201	3.9	109
370	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials. <i>Chemistry of Materials</i> , 2003 , 15, 2376-2382	9.6	107
369	Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. <i>Electrochemistry Communications</i> , 2003 , 5, 16-21	5.1	105
368	Lithium Dobalt Citrate Precursors in the Preparation of Intercalation Electrode Materials. <i>Chemistry of Materials</i> , 1996 , 8, 1429-1440	9.6	104
367	N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. <i>Carbon</i> , 2015 , 83, 262-274	10.4	103
366	Changes in the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during Lithium Extraction. <i>Chemistry of Materials</i> , 2004 , 16, 1573-1579	9.6	103
365	Nanoarchitectured TiO2/SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?. <i>Chemistry of Materials</i> , 2010 , 22, 1926-1932	9.6	99
364	Enhanced high-rate performance of manganese substituted Na 3 V 2 (PO 4) 3 /C as cathode for sodium-ion batteries. <i>Journal of Power Sources</i> , 2016 , 313, 73-80	8.9	99
363	Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. <i>Electrochimica Acta</i> , 2015 , 180, 824-830	6.7	96
362	Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4: X-ray Absorption Spectroscopic Study. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 4636-4	1842	94
361	Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries. <i>Chemistry of Materials</i> , 2009 , 21, 1834-1840	9.6	86
360	Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material. <i>Electrochemistry Communications</i> , 2016 , 67, 59-64	5.1	83
359	A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. <i>Journal of Materials Chemistry</i> , 2010 , 20, 4041		82
358	A new form of manganese carbonate for the negative electrode of lithium-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 2863-2866	8.9	79
357	The Origin of Capacity Fading in NiFe2O4 Conversion Electrodes for Lithium Ion Batteries Unfolded by 57Fe MBsbauer Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 12828-12832	3.8	78

356	Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. <i>Chemistry of Materials</i> , 2005 , 17, 5202-5208	9.6	78
355	Electrochemical evaluation of CuFe2O4 samples obtained by solgel methods used as anodes in lithium batteries. <i>Journal of Solid State Electrochemistry</i> , 2008 , 12, 729-737	2.6	77
354	Synthesis and electrochemical reaction with lithium of mesoporous iron oxalate nanoribbons. <i>Inorganic Chemistry</i> , 2008 , 47, 10366-71	5.1	75
353	A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water. <i>Electrochimica Acta</i> , 2014 , 135, 208-216	6.7	69
352	Na3V2(PO4)3/C Nanorods with Improved Electrode-Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. <i>ACS Applied Materials & District Materials</i> (1997) <i>ACS Applied Materials</i> (1997) <i>Acceptable Materials</i> (1997) <i>Materials</i> (9.5	68
351	On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. <i>Fuel</i> , 2010 , 89, 986-991	7.1	68
350	SnO reduction in lithium cells: study by X-ray absorption, 119Sn M\(\bar{B}\)sbauer spectroscopy and X-ray diffraction. <i>Journal of Electroanalytical Chemistry</i> , 2000 , 494, 136-146	4.1	68
349	Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. <i>Journal of Solid State Electrochemistry</i> , 1999 , 3, 121-134	2.6	68
348	Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. <i>RSC Advances</i> , 2016 , 6, 62157-62164	3.7	67
347	Lithium storage mechanisms and effect of partial cobalt substitution in manganese carbonate electrodes. <i>Inorganic Chemistry</i> , 2012 , 51, 5554-60	5.1	66
346	Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. <i>CrystEngComm</i> , 2014 , 16, 4602-4609	3.3	65
345	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. <i>Chemistry of Materials</i> , 2006 , 18, 2293-2301	9.6	64
344	Low-temperature mixed spinel oxides as lithium insertion compounds. <i>Journal of Materials Chemistry</i> , 1996 , 6, 37-39		64
343	X-ray Diffraction and (119)Sn MBsbauer Spectroscopy Study of a New Phase in the Bi(2)Se(3)-SnSe System: SnBi(4)Se(7). <i>Inorganic Chemistry</i> , 1999 , 38, 2131-2135	5.1	63
342	Electrochemical reactions of polycrystalline CrSb2 in lithium batteries. <i>Journal of Electroanalytical Chemistry</i> , 2001 , 501, 205-209	4.1	60
341	Structural and comparative electrochemical study of M(II) oxalates, MIEIMn, Fe, Co, Ni, Cu, Zn. <i>Journal of Power Sources</i> , 2013 , 227, 65-71	8.9	58
340	Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn2O4 and lambda-MnO2 for both aqueous and non-aqueous magnesium-ion batteries. <i>CrystEngComm</i> , 2015 , 17, 8728-8735	3.3	57
339	Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. <i>Journal of Power Sources</i> , 2012 , 197, 314-318	8.9	57

(2002-2013)

338	Improved Energy Storage Solution Based on Hybrid Oxide Materials. <i>ACS Sustainable Chemistry and Engineering</i> , 2013 , 1, 46-56	8.3	57
337	High-Performance Transition Metal Mixed Oxides in Conversion Electrodes: A Combined Spectroscopic and Electrochemical Study. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 14238-14246	3.8	57
336	Synergistic effects of transition metal substitution in conversion electrodes for lithium-ion batteries. <i>Journal of Materials Chemistry</i> , 2011 , 21, 10102		56
335	Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. <i>Carbon</i> , 2003 , 41, 3003-3013	10.4	54
334	X-ray Diffraction, EPR, and 6Li and 27Al MAS NMR Study of LiAlO2[liCoO2 Solid Solutions. <i>Inorganic Chemistry</i> , 1998 , 37, 264-269	5.1	54
333	Electrochemical studies of lithium and sodium intercalation in MoSe2. <i>Solid State Ionics</i> , 1996 , 83, 57-64	3.3	53
332	Electrochemical response of carbon aerogel electrodes in saline water. <i>Journal of Electroanalytical Chemistry</i> , 2012 , 671, 92-98	4.1	52
331	LiFePO 4 particle conductive composite strategies for improving cathode rate capability. <i>Electrochimica Acta</i> , 2015 , 163, 323-329	6.7	51
330	High reversible sodium insertion into iron substituted Na1+xTi2⊠Fex(PO4)3. <i>Journal of Power Sources</i> , 2014 , 252, 208-213	8.9	51
329	New tin-based materials containing cobalt and carbon for lithium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2007 , 605, 98-108	4.1	51
328	On the Mechanism of the Electrochemical Reaction of Tin Phosphide with Lithium. <i>Journal of the Electrochemical Society</i> , 2006 , 153, A1829	3.9	51
327	P3-Type Layered Sodium-Deficient Nickel-Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. <i>ChemPlusChem</i> , 2015 , 80, 1642-1656	2.8	50
326	Lithium Dickel Citrate Precursors for the Preparation of LiNiO2 Insertion Electrodes. <i>Chemistry of Materials</i> , 1997 , 9, 2145-2155	9.6	49
325	Synergistic Effects of Double Substitution in LiNi[sub 0.5][Fe[sub y]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Materials. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A13	3.9	49
324	Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. <i>Solid State Ionics</i> , 2008 , 179, 2198-2208	3.3	48
323	Lithium insertion mechanism in Sb-based electrode materials from 121Sb M\(\text{B}\)sbauer spectrometry. Journal of Power Sources, 2003 , 119-121, 585-590	8.9	47
322	New LiNi[sub y]Co[sub 1½y]Mn[sub 1+y]O[sub 4] Spinel Oxide Solid Solutions as 5 V Electrode Material for Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2004 , 151, A53	3.9	47
321	X-ray Diffraction, 7Li MAS NMR Spectroscopy, and 119Sn M\(\text{S}\)based Electroscopy Study of SnSb-Based Electrode Materials. <i>Chemistry of Materials</i> , 2002 , 14, 2962-2968	9.6	47

320	On the role of faradaic and capacitive contributions in the electrochemical performance of CoFe2O4 as conversion anode for Li-ion cells. <i>Solid State Ionics</i> , 2010 , 181, 616-622	3.3	46
319	(57)Fe MBsbauer spectroscopy and electron microscopy study of metal extraction from CuFe(2)O(4) electrodes in lithium cells. <i>ChemPhysChem</i> , 2007 , 8, 1999-2007	3.2	46
318	Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide. <i>Journal of the Electrochemical Society</i> , 1998 , 145, 730-736	3.9	46
317	Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1\(\text{\text{I}}\)]O2 oxides as cathode materials for lithium-ion batteries. <i>Solid State Ionics</i> , 2003 , 161, 197-204	3.3	45
316	Structure and Electrochemical Properties of Li1 🖟 (Ni y Co1 🗓) 1 + x O 2 : Effect of Chemical Delithiation at 0 C. <i>Journal of the Electrochemical Society</i> , 1995 , 142, 3997-4005	3.9	45
315	Electrochemical Interaction of Few-Layer Molybdenum Disulfide Composites vs Sodium: New Insights on the Reaction Mechanism. <i>Chemistry of Materials</i> , 2017 , 29, 5886-5895	9.6	44
314	EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. <i>Carbon</i> , 2002 , 40, 2301-2306	10.4	44
313	Chemical and electrochemical lithium intercalation and staging in 2H?SnS2. <i>Solid State Ionics</i> , 1992 , 51, 133-138	3.3	43
312	X-ray diffraction, 57Fe M\(\text{S}\)sbauer and step potential electrochemical spectroscopy study of LiFeyCo1\(\text{PO2}\)CO2 compounds. <i>Journal of Power Sources</i> , 1999 , 81-82, 547-553	8.9	42
311	Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type CaxMoO3. <i>Chemistry of Materials</i> , 2018 , 30, 5853-5861	9.6	41
310	57Fe M\(\bar{B}\)sbauer Spectroscopy Study of the Electrochemical Reaction with Lithium of MFe2O4 (M = Co and Cu) Electrodes. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 20081-20087	3.8	41
309	On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2017 , 784, 47-54	4.1	40
308	On the use of transition metal oxysalts as conversion electrodes in lithium-ion batteries. <i>Journal of Power Sources</i> , 2009 , 189, 823-827	8.9	40
307	Diffraction and XPS Studies of Misfit Layer Chalcogenides Intercalated with Cobaltocene. <i>Chemistry of Materials</i> , 1995 , 7, 1576-1582	9.6	39
306	NASICON-type Na3V2(PO4)3 as a new positive electrode material for rechargeable aluminium battery. <i>Electrochimica Acta</i> , 2018 , 260, 798-804	6.7	39
305	Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries. <i>Electrochemistry Communications</i> , 2013 , 27, 152-155	5.1	38
304	Optimized Chemical Stability and Electrochemical Performance of LiFePO[sub 4] Composite Materials Obtained by ZnO Coating. <i>Journal of the Electrochemical Society</i> , 2008 , 155, A211	3.9	36
303	Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. <i>Electrochimica Acta</i> , 2017 , 246, 908-913	6.7	35

302	Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping. <i>Solid State Ionics</i> , 2014 , 262, 573-577	3.3	35
301	Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 20182-2019	o ^{3.8}	35
300	A Functionalized Co2P Negative Electrode for Batteries Demanding High Li-Potential Reaction. Journal of the Electrochemical Society, 2012 , 159, A1253-A1261	3.9	35
299	Nanocomposite Electrode for Li-Ion Microbatteries Based on SnO on Nanotubular Titania Matrix. <i>Electrochemical and Solid-State Letters</i> , 2009 , 12, A186		35
298	Aluminium coordination in LiNi1 AlyO2 solid solutions. <i>Solid State Ionics</i> , 2000 , 128, 1-10	3.3	35
297	Cobalt(III) Effect on 27Al NMR Chemical Shifts in LiAlxCo1-xO2. <i>Journal of Physical Chemistry B</i> , 2001 , 105, 8081-8087	3.4	35
296	Electrochemical Characteristics of Crystalline and Amorphous SnS2 in Lithium Cells. <i>Journal of the Electrochemical Society</i> , 1996 , 143, 2847-2851	3.9	34
295	Textural evolution of synthetic FeOOH during thermal treatment by differential scanning calorimetry. <i>Journal of Colloid and Interface Science</i> , 1984 , 101, 392-400	9.3	34
294	On the Reliability of Sodium Co-Intercalation in Expanded Graphite Prepared by Different Methods as Anodes for Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2017 , 164, A3804-A3813	3.9	33
293	High-Performance Na3V2(PO4)3/C Cathode for Sodium-Ion Batteries Prepared by a Ball-Milling-Assisted Method. <i>European Journal of Inorganic Chemistry</i> , 2016 , 2016, 3212-3218	2.3	33
292	Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. <i>Journal of Power Sources</i> , 2014 , 248, 886-893	8.9	32
291	Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries. <i>CrystEngComm</i> , 2013 , 15, 9196	3.3	32
290	Controlled Growth and Application in Lithium and Sodium Batteries of High-Aspect-Ratio, Self-Organized Titania Nanotubes. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A1390-A1398	3.9	31
289	Structural and electrochemical properties of micro- and nano-crystalline CoSn electrode materials. <i>ChemPhysChem</i> , 2008 , 9, 1171-7	3.2	31
288	Electrochemical and 119Sn MBsbauer studies of the reaction of Co2SnO4 with lithium. <i>Electrochemistry Communications</i> , 2006 , 8, 731-736	5.1	31
287	Electrochemical, 6Li MAS NMR, and X-ray and Neutron Diffraction Study of LiCoxFeyMn2-(x+y)O4 Spinel Oxides for High-Voltage Cathode Materials. <i>Chemistry of Materials</i> , 2003 , 15, 1210-1216	9.6	31
286	Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries. <i>Pure and Applied Chemistry</i> , 2002 , 74, 1885-1894	2.1	31
285	Treasure Na-ion anode from trash coke by adept electrolyte selection. <i>Journal of Power Sources</i> , 2017 , 347, 127-135	8.9	30

284	New mixed transition metal oxysalts as negative electrode materials for lithium-ion batteries. <i>Solid State Ionics</i> , 2012 , 225, 518-521	3.3	30
283	Cation-deficient Mn, Co spinel oxides obtained by thermal decomposition of carbonate precursors. Journal of Solid State Chemistry, 1989 , 82, 87-94	3.3	30
282	Improving the cycling performance of LiFePO4 cathode material by poly(3,4-ethylenedioxythiopene) coating. <i>RSC Advances</i> , 2014 , 4, 26108-26114	3.7	29
281	Electron Paramagnetic Resonance, X-ray Diffraction, M\(\mathbb{B}\)sbauer Spectroscopy, and Electrochemical Studies on Nanocrystalline FeSn2 Obtained by Reduction of Salts in Tetraethylene Glycol. <i>Chemistry of Materials</i> , 2010 , 22, 2268-2275	9.6	29
280	Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2001 , 6, 55-62	2.6	29
279	Low-temperature hydrothermal transformations of LiCoO2 and HCoO2. <i>Materials Research Bulletin</i> , 1988 , 23, 899-904	5.1	29
278	Mn-Containing N-Doped Monolithic Carbon Aerogels with Enhanced Macroporosity as Electrodes for Capacitive Deionization. <i>ACS Sustainable Chemistry and Engineering</i> , 2016 , 4, 2487-2494	8.3	29
277	Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2017 , 724, 465-473	5.7	28
276	Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water. <i>Journal of Electroanalytical Chemistry</i> , 2015 , 741, 42-50	04.1	28
275	Synthesis and Electrochemical Characterization of a New Li-Co-Mn-O Spinel Phase for Rechargeable Lithium Batteries. <i>Journal of the Electrochemical Society</i> , 1997 , 144, 1939-1943	3.9	28
274	EPR studies of Li1☑(NiyCo1☑)1+xO2 solid solutions. <i>Solid State Communications</i> , 1997 , 102, 457-462	1.6	28
273	Improved Surface Stability of C+MO@NaV(PO) Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries. <i>ACS Applied Materials & Date of Sodium-Ion Batteries</i> . <i>ACS Applied Materials & Date of Sodium-Ion Batteries</i> .	9.5	27
272	TinDarbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO2. <i>Carbon</i> , 2007 , 45, 1396-1409	10.4	27
271	Structure and Lithium Extraction Mechanism in LiNi0.5Mn1.5O4 after Double Substitution with Iron and Titanium. <i>Electrochemical and Solid-State Letters</i> , 2006 , 9, A96-A100		27
270	Changes in local Ni/Mn environment in layered LiMgxNi0.5\(\mathbb{M}\)Mn0.5O2 (0 \(\overline{1}\)k \(\overline{1}\)0.10) after electrochemical extraction and reinsertion of lithium. <i>Journal of Materials Chemistry</i> , 2006 , 16, 359-369		27
269	Rotor blade grinding and re-annealing of LiCoO2: SEM, XPS, EIS and electrochemical study. <i>Journal of Electroanalytical Chemistry</i> , 2005 , 584, 147-156	4.1	27
268	Lithium intercalation into PbNb2S5, PbNbS3, SnNb2Se5, BiVS3, SnVSe3, and PbNb2Se5 misfit layer chalcogenides. <i>Journal of Solid State Chemistry</i> , 1992 , 100, 262-271	3.3	27
267	On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. <i>Electrochimica Acta</i> , 2015 , 170, 154-163	6.7	26

266	The influence of iron substitution on the electrochemical properties of Li1+xTi2\(\mathbb{H}\)Fex(PO4)3/C composites as electrodes for lithium batteries. <i>Journal of Materials Chemistry</i> , 2012 , 22, 21602		26	
265	Tin-Based composite Materials Fabricated by Anodic Oxidation for the Negative Electrode of Li-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2011 , 158, A1094	3.9	26	
264	EPR studies of Li deintercalation from LiCoMnO4 spinel-type electrode active material. <i>Journal of Power Sources</i> , 2006 , 159, 1389-1394	8.9	26	
263	Electrodeposition of coppertin nanowires on Ti foils for rechargeable lithium micro-batteries with high energy density. <i>Journal of Alloys and Compounds</i> , 2014 , 585, 331-336	5.7	25	
262	Changes in crystallite size and microstrains of hematite derived from the thermal decomposition of synthetic akaganeite. <i>Journal of Solid State Chemistry</i> , 1984 , 53, 303-312	3.3	25	
261	Induced Rate Performance Enhancement in Off-Stoichiometric Na V (PO) with Potential Applicability as the Cathode for Sodium-Ion Batteries. <i>Chemistry - A European Journal</i> , 2017 , 23, 7345-73	3 12 8	24	
260	Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution. <i>Journal of Power Sources</i> , 2019 , 432, 82-91	8.9	24	
259	Effect of the degree of porosity on the performance of poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blend membranes for lithium-ion battery separators. <i>Solid State Ionics</i> , 2015 , 280, 1-9	3.3	24	
258	Elucidation of Capacity Fading on CoFe[sub 2]O[sub 4] Conversion Electrodes for Lithium Batteries Based on [sup 57]Fe Mo ssbauer Spectroscopy. <i>Journal of the Electrochemical Society</i> , 2009 , 156, A589	3.9	24	
257	Optimization of the Electrochemical Behavior of Vapor Grown Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. <i>Journal of the Electrochemical Society</i> , 2005 , 152, A1797	3.9	24	
256	Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. <i>Electrochimica Acta</i> , 2002 , 47, 1115-1120	6.7	24	
255	Local Coordination of Low-Spin Ni3+ Probes in Trigonal LiAlyCo1-yO2 Monitored by HF-EPR. <i>Journal of Physical Chemistry B</i> , 2004 , 108, 4053-4057	3.4	24	
254	Improving the performance of titania nanotube battery materials by surface modification with lithium phosphate. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 5669-78	9.5	23	
253	High Performance Full Sodium-Ion Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. <i>Chemistry - A European Journal</i> , 2015 , 21, 14879-85	4.8	23	
252	NiMn2NFexO4 prepared by a reverse micelles method as conversion anode materials for Li-ion batteries. <i>Materials Chemistry and Physics</i> , 2010 , 124, 102-108	4.4	23	
251	Electrochemical Reaction of Lithium with Nanocrystalline CoSn[sub 3]. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, A209		23	
250	X-ray absorption spectroscopic study of LiCoO2 as the negative electrode of lithium-ion batteries. <i>ChemPhysChem</i> , 2006 , 7, 1086-91	3.2	23	
249	Lithium insertion mechanism in CoSb3 analysed by 121Sb M\(\bar{B}\)sbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations. <i>Journal of Materials Chemistry</i> , 2004 , 1759-1767		23	

248	Preparation, Sintering, and Electrochemical Properties of Tin Dioxide and Al-Doped Tin Dioxides Obtained from Citrate Precursors. <i>Chemistry of Materials</i> , 2000 , 12, 3044-3051	9.6	23
247	13C, 1H, 6Li Magic-Angle Spinning Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, and Fourier Transform Infrared Study of Intercalation Electrodes Based in Ultrasoft Carbons Obtained below 3100 K. <i>Chemistry of Materials</i> , 1999 , 11, 52-60	9.6	23
246	Influence of Solvent Evaporation Rate in the Preparation of Carbon-Coated Lithium Iron Phosphate Cathode Films on Battery Performance. <i>Energy Technology</i> , 2016 , 4, 573-582	3.5	23
245	A facile carbothermal preparation of Sntot composite electrodes for Li-ion batteries using low-cost carbons. <i>Journal of Solid State Electrochemistry</i> , 2012 , 16, 953-962	2.6	22
244	The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 6768-6771	8.9	22
243	New tin-containing spinel sulfide electrodes for ambient temperature rocking chair cells. <i>Journal of Power Sources</i> , 1996 , 62, 101-105	8.9	22
242	Acid-Delithiated Li1-x(NiyCo1-y)1+xO2 as Insertion Electrodes in Lithium Batteries. <i>Journal of Solid State Chemistry</i> , 1994 , 113, 182-192	3.3	22
241	Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. <i>Electrochimica Acta</i> , 2016 , 199, 172-179	6.7	22
240	On the Effect of Silicon Substitution in Na3V2(PO4)3 on the Electrochemical Behavior as Cathode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2018 , 5, 367-374	4.3	21
239	Nanobelts of Beta-Sodium Vanadate as Electrode for Magnesium and Dual Magnesium-Sodium Batteries. <i>Journal of the Electrochemical Society</i> , 2016 , 163, A2781-A2790	3.9	21
238	Improved electro-assisted removal of phosphates and nitrates using mesoporous carbon aerogels with controlled porosity. <i>Journal of Applied Electrochemistry</i> , 2014 , 44, 963-976	2.6	21
237	Nanocrystalline CoSn2-carbon composite electrode prepared by using sonochemistry. <i>Ultrasonics Sonochemistry</i> , 2012 , 19, 352-7	8.9	21
236	Electrosorption of environmental concerning anions on a highly porous carbon aerogel. <i>Journal of Electroanalytical Chemistry</i> , 2013 , 708, 80-86	4.1	20
235	Effect of the synthesis procedure on the local cationic distribution in layered LiNi1/2Mn1/2O2. Journal of Alloys and Compounds, 2009 , 475, 96-101	5.7	20
234	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. <i>Carbon</i> , 2004 , 42, 2153-2161	10.4	20
233	Electron Paramagnetic Resonance and Solid-State NMR Study of Cation Distribution in LiGayCo1-yO2 and Effects on the Electrochemical Oxidation. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 4290-4295	3.4	20
232	Lithium intercalation and copper extraction in spinel sulfides of general formula Cu2MSn3S8(M = Mn, Fe, Co, Ni). <i>Journal of Materials Chemistry</i> , 1996 , 6, 41		20
231	A Raman study of the misfit layer compounds, (SnS)1.17NbS2 and (PbS)1.18 TiS2. <i>Journal of Raman Spectroscopy</i> , 1992 , 23, 647-651	2.3	20

230	Mechanochemical preparation and thermal stability of Fe2O3 derived from FeOOH. <i>Materials Research Bulletin</i> , 1987 , 22, 513-520	5.1	20
229	Lithium ferrite formation by precipitation from Fe(III) solutions. <i>Journal of Solid State Chemistry</i> , 1988 , 77, 132-140	3.3	20
228	Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. <i>Electrochimica Acta</i> , 2020 , 332, 135502	6.7	20
227	Oxidized FeCoNi alloys as novel anode in Li-ion batteries. <i>Electrochemistry Communications</i> , 2011 , 13, 1427-1430	5.1	19
226	Sntott composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries. Journal of Solid State Electrochemistry, 2010 , 14, 139-148	2.6	19
225	New doped Li-M-Mn-O (M = Al, Fe, Ni) spinels as cathodes for rechargeable 3 V lithium batteries. Journal of Solid State Electrochemistry, 1998 , 2, 420-426	2.6	19
224	Cobalt Oxide Nanoparticles Prepared from Reverse Micelles as High-Capacity Electrode Materials for Li-Ion Cells. <i>Electrochemical and Solid-State Letters</i> , 2008 , 11, A198		19
223	New NixMg6\(\text{MnO8}\) Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells. Journal of Solid State Chemistry, 2002, 166, 330-335	3.3	19
222	Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2囗Coy]O4 spinels, 0. <i>Solid State Ionics</i> , 2001 , 140, 19-33	3.3	19
221	Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes. <i>Scientific Reports</i> , 2016 , 6, 20656	4.9	18
220	Exploring the high-voltage Mg2+/Na+ co-intercalation reaction of Na3VCr(PO4)3 in Mg-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 18081-18091	13	18
219	Effects of heteroatoms and nanosize on tin-based electrodes. <i>Journal of Power Sources</i> , 2009 , 189, 309-	·381 4	18
218	Electrochemical performance and local cationic distribution in layered LiNi1/2Mn1/2O2 electrodes for lithium ion batteries. <i>Electrochimica Acta</i> , 2009 , 54, 1694-1701	6.7	18
217	121Sb MBsbauer and X-ray Photoelectron Spectroscopy Studies of the Electronic Structure of Some Antimony Misfit Layer Compounds. <i>Chemistry of Materials</i> , 1997 , 9, 1393-1398	9.6	18
216	VSe2IJSy electrodes in lithium and lithium-ion cells. <i>Journal of Applied Electrochemistry</i> , 1997 , 27, 1207-1	216	18
215	IronBarbon composites as electrode materials in lithium batteries. <i>Carbon</i> , 2006 , 44, 1762-1772	10.4	18
214	Evaluation of discharge and cycling properties of skutterudite-type Co12yFeyNiySb3 compounds in lithium cells. <i>Journal of Power Sources</i> , 2002 , 107, 74-79	8.9	18
213	Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries. <i>Electrochimica Acta</i> , 2005 , 50, 1225-1232	6.7	18

212	Structural aspects of lithium intercalated PbVS3, PbTiS3, PbTi2S5 and SnNbS3 misfit layer compounds. <i>Materials Research Bulletin</i> , 1991 , 26, 1211-1218	5.1	18
211	Mechanochemical preparation and degradation of LiCoO2. <i>Reactivity of Solids</i> , 1987 , 4, 163-171		18
210	An unnoticed inorganic solid electrolyte: dilithium sodium phosphate with the nalipoite structure. <i>Inorganic Chemistry</i> , 2014 , 53, 2310-6	5.1	17
209	In Situ X-ray Diffraction Study of Electrochemical Insertion in Mg0.5Ti2(PO4)3: An Electrode Material for Lithium or Sodium Batteries. <i>Journal of the Electrochemical Society</i> , 2012 , 159, A1716-A172	213.9	17
208	A 57Fe MBsbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries. <i>Journal of Power Sources</i> , 2011 , 196, 6978-6981	8.9	17
207	Novel layered chalcogenides as electrode materials for lithium-ion batteries. <i>Journal of Power Sources</i> , 1997 , 68, 704-707	8.9	17
206	Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. Journal of the Electrochemical Society, 2004 , 151, A2113	3.9	17
205	SnHPO4: a promising precursor for active material as negative electrode in Li-ion cells. <i>Electrochimica Acta</i> , 2001 , 47, 489-493	6.7	17
204	Electrochemical lithium insertion into In16Sn4S32 and Cu4In20S32 spinel sulphides. <i>Journal of Alloys and Compounds</i> , 1995 , 217, 176-180	5.7	17
203	MetalBupport interaction effects in the liquid-phase selective hydrogenation of 1,4-butynediol with nickel catalysts supported on AlPO4 and on other conventional non-reducible compounds. <i>Journal of Molecular Catalysis</i> , 1993 , 85, 305-325		17
202	Electrodeposited Polyacrylonitrile and Cobalt-Tin Composite Thin Film on Titanium Substrate. Journal of the Electrochemical Society, 2012 , 159, A1028-A1033	3.9	16
201	High-pressure synthesis and electrochemical behavior of layered (1-a)LiNi1-yAlyO2[aLi[Li1/3Ni2/3]O2 oxides. <i>Journal of Solid State Chemistry</i> , 2005 , 178, 2692-2700	3.3	16
200	Electrochemical lithium intercalation into misfit layer sulfides. Chemistry of Materials, 1992, 4, 1021-103	26 9.6	16
199	Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2020 , 856, 113694	4.1	16
198	A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 4687-95	3.6	15
197	Exploring a Li-ion battery using surface modified titania nanotubes versus high voltage cathode nanowires. <i>Journal of Power Sources</i> , 2016 , 303, 194-202	8.9	15
196	Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13963	13	15
195	PAN-Encapsulated Nanocrystalline CoSn[sub 2] Particles as Negative Electrode Active Material for Lithium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2010 , 157, A666	3.9	15

(1991-2010)

194	Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. Journal of Electroanalytical Chemistry, 2010 , 642, 143-149	4.1	15	
193	Exploring an Aluminum Ion Battery Based on Molybdite as Working Electrode and Ionic Liquid as Electrolyte. <i>Journal of the Electrochemical Society</i> , 2018 , 165, A2994-A2999	3.9	15	
192	On the Mechanism of Magnesium Storage in Micro- and Nano-Particulate Tin Battery Electrodes. <i>Nanomaterials</i> , 2018 , 8,	5.4	14	
191	Electrochemical performance of the lithium insertion in Mn0.5\(\mathbb{R}\)CoxTi2(PO4)3/C composites (x=0, 0.25, and 0.5) as electrode material for lithium batteries. <i>Electrochimica Acta</i> , 2012 , 77, 150-156	6.7	14	
190	Nanocrystalline Fe1⊠CoxSn2 solid solutions prepared by reduction of salts in tetraethylene glycol. Journal of Alloys and Compounds, 2011 , 509, 3074-3079	5.7	14	
189	CoSn-graphite electrode material prepared by using the polyol method and high-intensity ultrasonication. <i>Electrochimica Acta</i> , 2011 , 56, 9808-9817	6.7	14	
188	Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries. <i>Journal of Power Sources</i> , 2009 , 194, 494-501	8.9	14	
187	SPES, 6Li MAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials. <i>Journal of Electroanalytical Chemistry</i> , 1998 , 454, 173-181	4.1	14	
186	Comparative analysis of the changes in local Ni/Mn environment in lithiumBickelmanganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium. <i>Journal of Power Sources</i> , 2007 , 174, 519-523	8.9	14	
185	High-pressure synthesis of Ga-substituted LiCoO2 with layered crystal structure. <i>Journal of Materials Chemistry</i> , 2002 , 12, 2501-2506		14	
184	Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives. <i>Gels</i> , 2016 , 2,	4.2	14	
183	Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 14254-14262	13	13	
182	Sodium storage behavior of Na0.66Ni0.33?xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. <i>Journal of Power Sources</i> , 2018 , 400, 317-324	8.9	13	
181	Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. <i>Electrochimica Acta</i> , 2012 , 62, 124-131	6.7	13	
180	Tunable Ti4+/Ti3+ Redox Potential in the Presence of Iron and Calcium in NASICON-Type Related Phosphates as Electrodes for Lithium Batteries. <i>Chemistry of Materials</i> , 2013 , 25, 4025-4035	9.6	13	
179	Lithium Insertion into Modified Conducting Domains of Graphitized Carbon Nanotubes. <i>Journal of the Electrochemical Society</i> , 2007 , 154, A964	3.9	13	
178	Microstructure and intercalation properties of petrol cokes obtained at 1400°C. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 39, 216-223	3.1	13	
177	Composition and cation-vacancy distribution of cation-deficient spinel oxides. <i>Journal of Solid State Chemistry</i> , 1991 , 93, 443-453	3.3	13	

176	Electrochemical intercalation of sodium into PbNbS3 and PbNb2S5 misfit layer compounds. <i>Solid State Ionics</i> , 1992 , 58, 179-184	3.3	13
175	On the benefits of Cr substitution on Na4MnV(PO4)3 to improve the high voltage performance as cathode for sodium-ion batteries. <i>Journal of Power Sources</i> , 2021 , 495, 229811	8.9	13
174	On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization. <i>Journal of Solid State Chemistry</i> , 2016 , 242, 21-28	3.3	13
173	Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. <i>ACS Applied Materials & Interfaces</i> , 2020 , 12, 21651-21660	9.5	13
172	Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries. <i>Journal of Alloys and Compounds</i> , 2015 , 646, 816-826	5.7	12
171	High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery. <i>Ultrasonics Sonochemistry</i> , 2015 , 24, 238-46	8.9	12
170	On the Structure and Electrochemical Reactions with Lithium of Tin(II) Phosphate Chloride. <i>Journal of the Electrochemical Society</i> , 2000 , 147, 1663	3.9	12
169	Local Effects of the Lithium Insertion into Cation-Deficient TinIndium Thiospinels Revealed by 119Sn MBsbauer Spectroscopy. <i>Chemistry of Materials</i> , 1998 , 10, 968-973	9.6	12
168	Structural Characterization and Electrochemical Reactions with Lithium of Cu2CoTixSn3-xS8 Solid Solutions. <i>Chemistry of Materials</i> , 1999 , 11, 2687-2693	9.6	12
167	Kinetics of intercalation of lithium and sodium into lead sulfide-niobium sulfide ((PbS)1.14(NbS2)2). <i>Chemistry of Materials</i> , 1993 , 5, 1167-1173	9.6	12
166	Preferential X-ray line Broadening and Thermal Behavior of Fe2O3. <i>Journal of the American Ceramic Society</i> , 1989 , 72, 1244-1246	3.8	12
165	Low-temperature hydrothermal formation and ion exchange of hydrated sodium manganates. <i>Solid State Ionics</i> , 1990 , 44, 125-130	3.3	12
164	X-ray line broadening in haematite derived from FeOOH by thermal and mechanical procedures. Journal of Materials Science Letters, 1986 , 5, 1295-1297		12
163	On the influence of particle morphology to provide high performing chemically desodiated C@NaV2(PO4)3 as cathode for rechargeable magnesium batteries. <i>Journal of Electroanalytical Chemistry</i> , 2018 , 827, 128-136	4.1	12
162	Self-Organized, Anatase, Double-Walled Nanotubes Prepared by Anodization under Voltage Ramp as Negative Electrode for Aqueous Sodium-Ion Batteries. <i>Journal of the Electrochemical Society</i> , 2015 , 162, A3007-A3012	3.9	11
161	Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. <i>Inorganic Chemistry</i> , 2017 , 56, 11845-11853	5.1	11
160	Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries. <i>Materials Research</i> , 2014 , 17, 1065-1070	1.5	11
159	Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water. <i>Journal of Solid State Electrochemistry</i> , 2014 , 18, 2847-2856	2.6	11

(2009-2013)

158	Improving the Electrochemical Properties of Self-Organized Titanium Dioxide Nanotubes in Lithium Batteries by Surface Polyacrylonitrile Electropolymerization. <i>Journal of the Electrochemical Society</i> , 2013 , 160, A3026-A3035	3.9	11
157	SnSeyS2 []y cathodic materials in lithium and sodium cells. <i>Electrochimica Acta</i> , 1997 , 42, 357-367	6.7	11
156	Electrochemical Sodium Insertion into MnCo Oxide. <i>Electrochemical and Solid-State Letters</i> , 1999 , 2, 545	i	11
155	Cation-deficient Mn-Co spinel oxides as electrode material for rechargeable lithium batteries. <i>Electrochimica Acta</i> , 1994 , 39, 339-345	6.7	11
154	Thermal behaviour of chemically deintercalated Li1 Ini1+xO2. <i>Journal of Thermal Analysis</i> , 1992 , 38, 295-301		11
153	Texture, crystallinity, and catalytic properties of Co3O4 obtained by thermal and mechanical treatments. <i>Journal of Colloid and Interface Science</i> , 1986 , 110, 172-180	9.3	11
152	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. <i>Journal of Thermal Analysis</i> , 1984 , 29, 479-489		11
151	CTAB-Assisted Synthesis of C@Na3V2(PO4)2F3 With Optimized Morphology for Application as Cathode Material for Na-Ion Batteries. <i>Frontiers in Physics</i> , 2019 , 7,	3.9	11
150	Structural and Local Environment Modifications in a Chemically Lithiated Iron Thiospinel. <i>Journal of Solid State Chemistry</i> , 1997 , 134, 238-247	3.3	10
149	119Sn MBsbauer spectroscopy: a powerful tool to unfold the reaction mechanism in advanced electrodes for lithium-ion batteries. <i>Hyperfine Interactions</i> , 2008 , 187, 13-17	0.8	10
148	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. <i>Carbon</i> , 2005 , 43, 923-936	10.4	10
147	Raman study and lattice dynamics calculations of misfit layered compounds: (PbS)1.18TiS2 and (PbS)1.12VS2. <i>Journal of Molecular Structure</i> , 1995 , 348, 107-110	3.4	10
146	Preparation and Characterization of New Misfit Layer Selenides SnVSe3and SnNb2Se5. <i>Chemistry Letters</i> , 1991 , 20, 1981-1984	1.7	10
145	Effect of grinding in synthetic akaganeite. <i>Journal of Colloid and Interface Science</i> , 1986 , 113, 212-217	9.3	10
144	Self-assembled Li4Ti5O12/TiO2/Li3PO4 for integrated Lifbn microbatteries. <i>Electrochemistry Communications</i> , 2015 , 56, 61-64	5.1	9
143	Iron Oxidellon Sulfide Hybrid Nanosheets as High-Performance Conversion-Type Anodes for Sodium-Ion Batteries. <i>ACS Applied Energy Materials</i> , 2020 , 3, 10765-10775	6.1	9
142	Optimization of tin intermetallics and composite electrodes for lithium-ion batteries obtained by sonochemical synthesis. <i>Journal of Solid State Electrochemistry</i> , 2013 , 17, 2495-2501	2.6	9
141	Local coordination of Fe(3+) in layered LiCo(1-y)Al(y)O(2) oxides determined by high-frequency electron paramagnetic resonance spectroscopy. <i>Inorganic Chemistry</i> , 2009 , 48, 4798-805	5.1	9

140	FeSn2-Polyacrylonitrile Electrode Obtained by Using High-Intensity Ultrasonication. <i>Electrochemical and Solid-State Letters</i> , 2011 , 14, A148		9
139	Novel fabrication technologies of 1D TiO2 nanotubes, vertical tin and iron-based nanowires for Li-ion microbatteries. <i>International Journal of Nanotechnology</i> , 2012 , 9, 260	1.5	9
138	Polyacrylonitrile and cobaltlin compounds based composite and its electrochemical properties in lithium ion batteries. <i>Journal of Alloys and Compounds</i> , 2009 , 485, 385-390	5.7	9
137	Local environment of tin in layered SnSe2xS2(1½) compounds by 119Sn M\(\bar{B}\)sbauer spectroscopy. <i>Physical Review B</i> , 1997 , 56, 6371-6375	3.3	9
136	Understanding the voltage profile of Li insertion into LiNi0.5¶FeyMn1.5O4 in Li cells. <i>Electrochimica Acta</i> , 2004 , 49, 1963-1967	6.7	9
135	Li-to-Network Interaction in Electrochemically Lithiated Tin Hydrogen Phosphate. <i>Journal of the Electrochemical Society</i> , 2002 , 149, A1030	3.9	9
134	Electrochemical and 119Sn M\(\text{S}\)sbauer study of sulfospinels as anode materials for lithium-ion batteries. <i>Electrochimica Acta</i> , 2000 , 46, 127-135	6.7	9
133	X-ray and neutron diffraction, 57Fe M\(\text{S}\)sbauer spectroscopy and X-ray absorption spectroscopy studies of iron-substituted lithium cobaltate. <i>Solid State Communications</i> , 2000 , 115, 1-6	1.6	9
132	Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3. <i>Journal of Alloys and Compounds</i> , 1999 , 282, 93-100	5.7	9
131	Optical, Raman and resonance Raman spectra and lattice dynamics calculations of the misfit layer compounds, (SnS)1.17NbS2 and (PbS)1.18TiS2. <i>Chemical Physics</i> , 1994 , 181, 377-392	2.3	9
130	Hydrated lithium intercalation compounds of misfit layer sulfides. <i>Chemistry of Materials</i> , 1992 , 4, 2-4	9.6	9
129	Mixed Co,Fe oxides prepared by thermal or mechanical treatment of carbonate precursors. <i>Reactivity of Solids</i> , 1989 , 7, 235-248		9
128	Relationships between composition and surface properties of the dehydration products of synthetic manganite. <i>Surface and Coatings Technology</i> , 1986 , 27, 343-350	4.4	9
127	Changes in crystallinity and thermal effects in ground vaterite. <i>Journal of Materials Science</i> , 1985 , 20, 941-946	4.3	9
126	Limitations in the formal kinetic analysis of isothermal and thermogravimetric data. <i>Thermochimica Acta</i> , 1985 , 85, 287-290	2.9	9
125	Ordered mesoporous titanium oxide for thin film microbatteries with enhanced lithium storage. <i>Electrochimica Acta</i> , 2015 , 166, 293-301	6.7	8
124	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe M\(\text{B}\)sbauer spectroscopy. <i>Hyperfine Interactions</i> , 2012 , 207, 53-59	0.8	8
123	Tin Phosphate Electrode Materials Prepared by the Hydrolysis of Tin Halides for Application in Lithium Ion Battery. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 5316-5323	3.8	8

122	Comparative study of composite electrodes containing tin, polyacrylonitrile and cobalt or iron. Journal of Power Sources, 2011 , 196, 2893-2898	8.9	8
121	Unfolding tin-cobalt interactions in oxide-based composite electrodes for Li-ion batteries by MBsbauer spectroscopy. <i>ChemPhysChem</i> , 2007 , 8, 80-6	3.2	8
120	Effect of the high pressure on the structure and intercalation properties of lithium lickel line and intercalation properties of lithium lickel line and lickel lickel line and lickel l	3.3	8
119	Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries. <i>Journal of Power Sources</i> , 2006 , 161, 1324-1334	8.9	8
118	Improved Electrochemical Performance of Tin Dioxide Using a Tin Phosphate-Based Coating. <i>Electrochemical and Solid-State Letters</i> , 2007 , 10, A286		8
117	Composition and electrochemical properties of LiCu x Mn2 O4 and LiCu0.5 Al y Mn1.5O4. <i>Journal of Solid State Electrochemistry</i> , 2004 , 8, 521	2.6	8
116	Structural, Thermodynamic, and Kinetic Properties of Alkali-Metal Intercalation into Group 5 Metal Ditellurides. <i>Chemistry of Materials</i> , 1995 , 7, 1171-1177	9.6	8
115	Chain Cluster Polymerization and Alkali Metal Intercalation into Niobium Ditelluride. <i>Inorganic Chemistry</i> , 1994 , 33, 3164-3168	5.1	8
114	On the ultrastructure and morphology of colloidal cobalt ferrite. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 365		8
113	Thermal behaviour of synthetic akaganeite under different experimental conditions. <i>Thermochimica Acta</i> , 1985 , 92, 525-528	2.9	8
112	Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. <i>Energy Storage Materials</i> , 2021 , 38, 462-472	19.4	8
111	On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2019 , 789, 1035-1045	5.7	7
110	On the Beneficial Effect of MgCl[as Electrolyte Additive to Improve the Electrochemical Performance of LilliD as Cathode in Mg Batteries. <i>Nanomaterials</i> , 2019 , 9,	5.4	7
109	Electrochemical in battery polymerization of poly(alkylenedioxythiophene) over lithium iron phosphate for high-performance cathodes. <i>Physical Chemistry Chemical Physics</i> , 2014 , 16, 20724-30	3.6	7
108	Layered solid solutions of LiNi1⊠CoxO2 with LiGaO2 obtained under high oxygen pressure. Journal of Materials Chemistry, 2004 , 14, 366-373		7
107	Effects of Partial Acid Delithiation on the Electrochemical Lithium Insertion Properties of Nickel-Stabilized LiMn2O4 Spinel Oxides. <i>Journal of Solid State Chemistry</i> , 2000 , 150, 196-203	3.3	7
106	119Sn Moessbauer Spectroscopy of Some Misfit Layer Sulfides. <i>Chemistry of Materials</i> , 1995 , 7, 1193-1	1997.6	7
105	Lithium and sodium intercalation into VTe2. Journal of Materials Chemistry, 1993, 3, 1271-1274		7

104	Lithium/n-alkylamine intercalation into lead, vanadium misfit layer sulfide. <i>Materials Research Bulletin</i> , 1993 , 28, 469-476	5.1	7
103	Mn and Co substitution in FeOOH and its decomposition products. <i>Journal of Materials Science</i> , 1990 , 25, 5207-5214	4.3	7
102	Mn, Co oxides prepared by the thermal decomposition of carbonates. <i>Thermochimica Acta</i> , 1988 , 133, 257-262	2.9	7
101	Tk and DTA stkdies of lithikm insertion transition metal compoknds. <i>Materials Chemistry and Physics</i> , 1988 , 20, 145-152	4.4	7
100	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. <i>Journal of Thermal Analysis</i> , 1984 , 29, 491-501		7
99	Mechanical dehydration of FeOOH by wet grinding procedures. <i>Journal of the Chemical Society Chemical Communications</i> , 1984 , 559-560		7
98	Waste Pd/Fish-Collagen as anode for energy storage. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 131, 109968	16.2	6
97	Theoretical and Experimental Study on the Electrochemical Behavior of Beta-Sodium Vanadate in Rechargeable Magnesium Batteries Using Several Electrolyte Solutions. <i>Journal of the Electrochemical Society</i> , 2020 , 167, 070512	3.9	6
96	Towards an all-solid-state battery: Preparation of conversion anodes by electrodeposition and existing processes. <i>Journal of Power Sources</i> , 2013 , 244, 403-409	8.9	6
95	On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries. <i>Journal of Solid State Electrochemistry</i> , 2010 , 14, 1749-1753	2.6	6
94	Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries. <i>Electrochimica Acta</i> , 2006 , 52, 1281-1289	6.7	6
93	A new tantalum sulfur compound as electrode material for non-aqueous alkali metal batteries. <i>Electrochimica Acta</i> , 1994 , 39, 2665-2671	6.7	6
92	Chemical and electrochemical intercalation of lithium into SnTiS3 and BiTi2S5 misfit layer compounds. <i>Solid State Ionics</i> , 1993 , 63-65, 450-456	3.3	6
91	Changes in the kinetics of the vaterite-calcite transformation with temperature and sample crystallinity. <i>Journal of Materials Science</i> , 1986 , 21, 947-952	4.3	6
90	Effect of crystallinity in the thermal behaviour of nickel hydroxide. <i>Journal of Materials Science</i> , 1986 , 21, 3668-3672	4.3	6
89	Textural evolution of Fe2O3 obtained by thermal and mechanochemical decomposition of FeOOH. <i>Journal of Colloid and Interface Science</i> , 1988 , 122, 507-513	9.3	6
88	Effect of crystallinity on the thermal evolution of Fe2O3. <i>Thermochimica Acta</i> , 1988 , 133, 107-112	2.9	6
87	Crystallite size and microstrains of Co3O4 derived from CoOOH and Co(OH)2. <i>Journal of Solid State Chemistry</i> , 1985 , 59, 388-392	3.3	6

86	Influence of crystallinity on the kinetics of the litharge-massicot phase transition. <i>Reactivity of Solids</i> , 1985 , 1, 43-55		6
85	On the use of diatomite as antishrinkage additive in the preparation of monolithic carbon aerogels. <i>Carbon</i> , 2016 , 98, 280-284	10.4	5
84	Improved coulombic efficiency in nanocomposite thin film based on electrodeposited-oxidized FeNi-electrodes for lithium-ion batteries. <i>Journal of Alloys and Compounds</i> , 2013 , 557, 82-90	5.7	5
83	57Fe MBsbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5 V electrodes. <i>Journal of Power Sources</i> , 2004 , 135, 281-285	8.9	5
82	Effect of oxidative stabilization on the electrochemical performance of carbon mesophases as electrode materials for lithium batteries. <i>Journal of Solid State Electrochemistry</i> , 2005 , 9, 627-633	2.6	5
81	Intercalation of n-alkylamines into misfit layer sulfides. <i>Journal of Materials Chemistry</i> , 1996 , 6, 861-866		5
80	Ion exchange of potassium hexatungstate (K0.30WO3.15) by protons. Solid State Ionics, 1991, 47, 75-79	3.3	5
79	Relationships between the surface properties of Fe2O3 and its cobalt-modified products. <i>Journal of Colloid and Interface Science</i> , 1990 , 138, 565-579	9.3	5
78	Effect of preliminary grinding on the composition and thermal evolution of lead dioxide. <i>Reactivity of Solids</i> , 1987 , 3, 251-261		5
77	Limitations in the use of X-ray crystallite size in the determination of surface area in Co3O4. <i>Journal of Colloid and Interface Science</i> , 1987 , 115, 274-276	9.3	5
76	A procedure for the analysis of gas adsorption measurements. Computers & Chemistry, 1985, 9, 7-9		5
75	Exploring hybrid Mg2+/H+ reactions of C@MgMnSiO4 with boosted voltage in magnesium-ion batteries. <i>Electrochimica Acta</i> , 2022 , 404, 139738	6.7	5
74	A theoretical and experimental study of hexagonal molybdenum trioxide as dual-ion electrode for rechargeable magnesium battery. <i>Journal of Alloys and Compounds</i> , 2020 , 831, 154795	5.7	4
73	119Sn MBsbauer spectroscopy analysis of SnIloII composites prepared from a Fuel Oil Pyrolysis precursor as anodes for Li-ion batteries. <i>Materials Chemistry and Physics</i> , 2013 , 138, 747-754	4.4	4
72	Electrochemical lithium insertion in a cation deficient thiospinel Cu3.31GeFe4Sn12S32. <i>Journal of Materials Chemistry</i> , 1998 , 8, 1399-1404		4
71	Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel ChemInform, 2005, 36, no		4
70	Nickel-stabilized composite manganese oxides as lithium insertion electrodes. <i>Journal of Power Sources</i> , 1999 , 84, 75-79	8.9	4
69	Raman study and lattice dynamics calculation of the misfit layer compound (PbS)1.12VS2. <i>Journal of Raman Spectroscopy</i> , 1995 , 26, 675-681	2.3	4

68	Lithium insertion into pyrochlore WO3. Solid State Ionics, 1991, 48, 231-240	3.3	4
67	Chromium substitution and crystallinity changes in FeOOH. <i>Journal of Materials Science</i> , 1990 , 25, 1813	-4815	4
66	Synthesis and alteration of ⊞iFeO2 by mechanochemical processes. <i>Journal of Materials Science</i> , 1988 , 23, 2971-2974	4.3	4
65	Thermal effects induced by grinding in dolomite. <i>Materials Chemistry and Physics</i> , 1984 , 10, 225-235	4.4	4
64	Influence of Cosurfactant on the Synthesis of Surface-Modified Na2/3Ni1/3Mn2/3O2 as a Cathode for Sodium-Ion Batteries. <i>ChemElectroChem</i> , 2020 , 7, 3528-3534	4.3	4
63	Effect of the Mn/V ratio to optimize the kinetic properties of Na3+xMnxV1-xCr(PO4)3 positive electrode for sodium-ion batteries. <i>Electrochimica Acta</i> , 2021 , 375, 137982	6.7	4
62	Iron substitution in Na4VMn(PO4)3 as a strategy for improving the electrochemical performance of sodium-ion batteries. <i>Journal of Electroanalytical Chemistry</i> , 2021 , 895, 115533	4.1	4
61	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. <i>Dalton Transactions</i> , 2019 , 48, 5417-5424	4.3	3
60	Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites. <i>Molecules</i> , 2020 , 25,	4.8	3
59	Improving the Electrochemistry of Anatase for Sodium Ion Batteries by Using Self-Organized TiO2 Nanotubes Prepared by Anodization under Variable Voltage. <i>ECS Transactions</i> , 2014 , 62, 45-56	1	3
58	Structural Modifications and Electrochemical Behavior of Lithium-Inserted In16Fe8S32. <i>Journal of Solid State Chemistry</i> , 1998 , 138, 193-200	3.3	3
57	Electrochemical lithium and sodium intercalation into TaFe1.25Te3. <i>Journal of Solid State Electrochemistry</i> , 1998 , 2, 328-333	2.6	3
56	Local Effects of the Electrochemical Reaction of Lithium with Sn2ClPO4 and SnHPO4: A Combined 31P, 7Li MAS NMR and 119Sn Mossbauer Spectroscopy Study. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 17436-17442	3.8	3
55	Distribution of Cations and Vacancies in TaFe1.25Te3Studied by M\(\text{B}\)sbauer Spectroscopy. <i>Journal of Physical Chemistry B</i> , 1998 , 102, 8712-8718	3.4	3
54	Electrochemical proton insertion in Mn2.2Co0.27O4 from aqueous borate solution. <i>Electrochimica Acta</i> , 1999 , 45, 931-934	6.7	3
53	A MBsbauer-effect investigation of some electrochemically inserted lithium thiospinels. <i>Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics</i> , 1996 , 18, 237-241		3
52	Sodium Intercalation into (PbS)1.18(TiS2)2Misfit Layer Compound. <i>Journal of Solid State Chemistry</i> , 1996 , 124, 238-243	3.3	3
51	Thermodynamic and kinetic properties of lithium insertion into titanium misfit layer sulfides. Journal of Materials Chemistry, 1994 , 4, 1413		3

50	Cobaltocene intercalation into misfit layer chalcogenides. <i>Journal of the Chemical Society Chemical Communications</i> , 1994 , 1081-1082		3
49	Preparation of mixed oxides in the Li-Co-O and Li-Mn-O systems by hydrolysis reactions. <i>Reactivity of Solids</i> , 1989 , 7, 263-271		3
48	Thermal effects induced by imperfections in powdered solids. <i>Thermochimica Acta</i> , 1987 , 110, 319-323	2.9	3
47	Comments on the paper Iron/manganese oxide catalyst for Fischer-Tropsch synthesis. Part I: structural and textural changes by calcination, reduction and synthesis [IApplied Catalysis, 1984, 9, 133-1]	35	3
46	Inorganic solids for dual magnesium and sodium battery electrodes. <i>Journal of Solid State Electrochemistry</i> , 2020 , 24, 2565-2573	2.6	2
45	Influence of composition modification on Ca0.5MMgxTi2(PO4)3 (0.0MD.5) nanoparticles as electrodes for lithium batteries. <i>Materials Research Bulletin</i> , 2014 , 49, 566-571	5.1	2
44	Ultrafine layered LiCoO2 obtained from citrate precursors. <i>Ionics</i> , 1997 , 3, 1-15	2.7	2
43	A 57Fe MBsbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes. <i>Hyperfine Interactions</i> , 2008 , 183, 1-5	0.8	2
42	X-ray absorption spectra of the spinel LiCu0.5Mn1.5O4. Journal of Power Sources, 2008, 175, 570-574	8.9	2
41	Increasing Cluster Correlations during Electrochemical Insertion Unfolded by the Correlation Correction Factor in the Frame of the Cluster Variation Method. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 6942-6946	3.4	2
40	Chemically deintercalated cathode materials for lithium cells. <i>Ionics</i> , 1995 , 1, 246-250	2.7	2
39	Electrochemical alkali metal intercalation into (BiS)1.17(NbS2)2. Solid State Ionics, 1994, 70-71, 439-444	3.3	2
38	Proton exchange of layered LiCrO2. <i>Materials Research Bulletin</i> , 1989 , 24, 781-787	5.1	2
37	Thermal evolution of the lithiation product of Mn3O4. <i>Thermochimica Acta</i> , 1989 , 146, 365-369	2.9	2
36	Kinetics of the isothermal transformation of PbO2 into PbO2. <i>Thermochimica Acta</i> , 1989 , 138, 277-283	2.9	2
35	Structural modifications induced by proton exchange in £LiFeO2. <i>Materials Research Bulletin</i> , 1990 , 25, 997-1002	5.1	2
34	Mechanochemical transformation of FeOOH into Fe2O3 in the presence of Li2CO3. <i>Journal of Materials Science Letters</i> , 1987 , 6, 223-224		2
33	Effect of preliminary mechanical activation on the behaviour of orthorhombic lead dioxide. <i>Journal of Thermal Analysis</i> , 1988 , 34, 1421-1425		2

32	Anode materials for lithium-ion batteries 2018 , 43-58		2
31	Relationships between the length of self-organized titania nanotube, adsorbed solvents and its electrochemical reaction with lithium. <i>Journal of Solid State Electrochemistry</i> , 2015 , 19, 3013-3018	2.6	1
30	Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries. <i>Journal of Applied Electrochemistry</i> , 2009 , 39, 899-906	2.6	1
29	Preparation and Characterization of Intermetallic Nanoparticles for Lithium Ion Batteries. <i>Journal of Nano Research</i> , 2012 , 17, 53-65	1	1
28	NiCo2O4 Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries <i>ChemInform</i> , 2010 , 33, no-no		1
27	Lithium insertion electrodes based on niobium telluride thin films. <i>Electrochimica Acta</i> , 1998 , 43, 495-50	12 .7	1
26	125Te MBsbauer spectroscopic study of layered transition metal ditellurides with interlayer communication. <i>Solid State Communications</i> , 1995 , 96, 911-914	1.6	1
25	Chemical and electrochemical lithium insertion into ternary transition metal sulfides MMo2S4 (M: V, Cr, Fe). <i>Journal of Power Sources</i> , 1992 , 39, 299-312	8.9	1
24	TG and DSC studies of lithium insertion in LiFe5O8. <i>Thermochimica Acta</i> , 1988 , 133, 203-207	2.9	1
23	Texture and microstructure of NiO derived from Ni(OH)2 in vacuum. Surface Technology, 1985, 26, 261-7	268	1
22	Effect of grinding on the kinetics of the transformation vaterite-calcite. <i>Thermochimica Acta</i> , 1985 , 92, 211-214	2.9	1
21	In Situ Preparation of Composite Electrodes: Antimony Alloys and Compounds 2002 , 193-200		1
20	A dual vanadium substitution strategy for improving NASICON-type cathode materials for Na-ion batteries. <i>Sustainable Energy and Fuels</i> , 2021 , 5, 4095-4103	5.8	1
19	Nanostructured Electrodes for Lithium Ion Batteries383-413		1
18	Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. <i>Journal of Cleaner Production</i> , 2022 , 359, 131994	10.3	О
17	Computational and Experimental investigation of Nalipoite-Li2APO4 (A = Na, K) electrolytes for Li-ion batteries. <i>Materials Research Society Symposia Proceedings</i> , 2015 , 1740, 37		
16	Carbon nanomaterials for advanced lithium and sodium-ion batteries 2019 , 335-355		
15	Nanoscale Tin Heterostructures for Improved Energy Storage in Lithium Batteries. <i>ACS Symposium Series</i> , 2013 , 1-22	0.4	

LIST OF PUBLICATIONS

14	Applications of MBsbauer Spectroscopy in The Study of Lithium Battery Materials 2013 , 552-563	
13	Live Energy to Your Study Estudents Worldwide Gather in Europe To Design Future Materials for Energy Storage and Conversion. <i>Journal of Chemical Education</i> , 2011 , 88, 1203-1206	2.4
12	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. <i>Carbon</i> , 2004 , 42, 2153-2153	10.4
11	Key factors controlling the electrochemical performance of the cation-deficient mixed spinel oxide Mn2.2Co0.27O4 as cathode in 3 V rechargeable lithium batteries. <i>Journal of Power Sources</i> , 2001 , 94, 122-128	8.9
10	Chemical delithiation, thermal transformations and electrochemical behaviour of iron-substituted lithium nickelate <i>Materials Research Society Symposia Proceedings</i> , 2000 , 658, 971	
9	Preparation and sintering behaviour of ultrafine Mn/Fe and Fe/Co mixed oxides. <i>Journal of the European Ceramic Society</i> , 1989 , 5, 357-363	6
8	Kinetics of the recovery of crystallinity in ground dolomite. <i>Materials Chemistry and Physics</i> , 1985 , 13, 477-482	4.4
7	Carbon-Based Negative Electrodes of Lithium-Ion Batteries Obtained from Residua of the Petroleum Industry 2002 , 101-108	
6	On the Use of In-Situ Generated Tin-Based Composite Materials in Lithium-Ion Cells 2002 , 201-208	
5	Short-Range Co/Mn Ordering and Electrochemical Intercalation of Li into Li[Mn2-yCoy]O4 SPINELS, 0 2002 , 475-482	
4	A 57Fe M\(\text{S}\)sbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes 2008 , 173-177	
3	Nanostructured TiO2 Materials for New-Generation Li-lon Batteries 2017 , 171-221	
2	Nanostructured TiO2 Materials for New-Generation Li-Ion Batteries 2011 , 183-236	
1	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe M\(\mathbb{B}\)sbauer spectroscopy 2013 , 489-495	