
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6375536/publications.pdf Version: 2024-02-01

ΙοςÃΩΙ Τιρλοο

#	Article	IF	CITATIONS
1	NiCo2O4Spinel:Â First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries. Chemistry of Materials, 2002, 14, 2847-2848.	3.2	458
2	Carbon black: a promising electrode material for sodium-ion batteries. Electrochemistry Communications, 2001, 3, 639-642.	2.3	355
3	Alternative Li-Ion Battery Electrode Based on Self-Organized Titania Nanotubes. Chemistry of Materials, 2009, 21, 63-67.	3.2	320
4	Carbon Microspheres Obtained from Resorcinol-Formaldehyde as High-Capacity Electrodes for Sodium-Ion Batteries. Electrochemical and Solid-State Letters, 2005, 8, A222.	2.2	313
5	Chemical and Electrochemical Li-Insertion into the Li4Ti5O12Spinel. Chemistry of Materials, 2004, 16, 5721-5725.	3.2	307
6	CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. Journal of Power Sources, 2007, 172, 379-387.	4.0	306
7	Cation distribution and chemical deintercalation of Li1-xNi1+xO2. Materials Research Bulletin, 1990, 25, 623-630.	2.7	288
8	Inorganic materials for the negative electrode of lithium-ion batteries: state-of-the-art and future prospects. Materials Science and Engineering Reports, 2003, 40, 103-136.	14.8	249
9	Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochimica Acta, 2007, 52, 7986-7995.	2.6	146
10	Effect of Iron Substitution in the Electrochemical Performance of Na ₃ V ₂ (PO ₄) ₃ as Cathode for Na-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3077-A3083.	1.3	141
11	Structure and Electrochemical Properties of Boron-Doped LiCoO2. Journal of Solid State Chemistry, 1997, 134, 265-273.	1.4	140
12	TiO2 nanotubes manufactured by anodization of Ti thin films for on-chip Li-ion 2D microbatteries. Electrochimica Acta, 2009, 54, 4262-4268.	2.6	137
13	Benefits of Chromium Substitution in Na ₃ V ₂ (PO ₄) ₃ as a Potential Candidate for Sodiumâ€ion Batteries. ChemElectroChem, 2015, 2, 995-1002.	1.7	137
14	Characterisation of mesocarbon microbeads (MCMB) as active electrode material in lithium and sodium cells. Carbon, 2000, 38, 1031-1041.	5.4	136
15	Optimizing preparation conditions for 5 V electrode performance, and structural changes in Li1â^'xNi0.5Mn1.5O4 spinel. Electrochimica Acta, 2002, 47, 1829-1835.	2.6	134
16	Electrochemical reaction of lithium with the CoSb3 skutterudite. Journal of Materials Chemistry, 1999, 9, 2517-2521.	6.7	128
17	Enhanced high-rate performance of manganese substituted Na 3 V 2 (PO 4) 3 /C as cathode for sodium-ion batteries. Journal of Power Sources, 2016, 313, 73-80.	4.0	126
18	Improvement of the Electrochemical Performance of LiCoPO[sub 4] 5 V Material Using a Novel Synthesis Procedure, Electrochemical and Solid-State Letters, 2002, 5, A234,	2.2	125

#	Article	IF	CITATIONS
19	Submicronic particles of manganese carbonate prepared in reverse micelles: A new electrode material for lithium-ion batteries. Electrochemistry Communications, 2007, 9, 1744-1748.	2.3	123
20	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4Spinel Oxides for 5-V Cathode Materials. Chemistry of Materials, 2003, 15, 2376-2382.	3.2	121
21	X-ray diffraction and electrochemical impedance spectroscopy study of zinc coated LiNi0.5Mn1.5O4 electrodes. Journal of Electroanalytical Chemistry, 2004, 566, 187-192.	1.9	121
22	N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon, 2015, 83, 262-274.	5.4	118
23	Electrochemical reaction of lithium with CoP3. Journal of Power Sources, 2002, 109, 308-312.	4.0	117
24	Negative Electrodes for Lithium- and Sodium-Ion Batteries Obtained by Heat-Treatment of Petroleum Cokes below 1000°C. Journal of the Electrochemical Society, 2002, 149, A201.	1.3	115
25	Effect of aluminum doping on carbon loaded Na3V2(PO4)3 as cathode material for sodium-ion batteries. Electrochimica Acta, 2015, 180, 824-830.	2.6	115
26	Changes in oxidation state and magnetic order of iron atoms during the electrochemical reaction of lithium with NiFe2O4. Electrochemistry Communications, 2003, 5, 16-21.	2.3	109
27	Lithiumâ^'Cobalt Citrate Precursors in the Preparation of Intercalation Electrode Materials. Chemistry of Materials, 1996, 8, 1429-1440.	3.2	107
28	Changes in the Local Structure of LiMgyNi0.5-yMn1.5O4Electrode Materials during Lithium Extraction. Chemistry of Materials, 2004, 16, 1573-1579.	3.2	107
29	Nanoarchitectured TiO ₂ /SnO: A Future Negative Electrode for High Power Density Li-Ion Microbatteries?. Chemistry of Materials, 2010, 22, 1926-1932.	3.2	107
30	Advancing towards a veritable calcium-ion battery: CaCo2O4 positive electrode material. Electrochemistry Communications, 2016, 67, 59-64.	2.3	107
31	Formation and Oxidation of Nanosized Metal Particles by Electrochemical Reaction of Li and Na with NiCo2O4:  X-ray Absorption Spectroscopic Study. Journal of Physical Chemistry C, 2007, 111, 4636-4642.	1.5	103
32	Cobalt Oxalate Nanoribbons as Negative-Electrode Material for Lithium-Ion Batteries. Chemistry of Materials, 2009, 21, 1834-1840.	3.2	96
33	Na ₃ V ₂ (PO ₄) ₃ /C Nanorods with Improved Electrode–Electrolyte Interface As Cathode Material for Sodium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 23151-23159.	4.0	92
34	Reversible intercalation of aluminium into vanadium pentoxide xerogel for aqueous rechargeable batteries. RSC Advances, 2016, 6, 62157-62164.	1.7	91
35	A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. Journal of Materials Chemistry, 2010, 20, 4041.	6.7	88
36	A new form of manganese carbonate for the negative electrode of lithium-ion batteries. Journal of Power Sources, 2011, 196, 2863-2866.	4.0	87

#	Article	IF	CITATIONS
37	Photoelectron Spectroscopic Study of the Reaction of Li and Na with NiCo2O4. Chemistry of Materials, 2005, 17, 5202-5208.	3.2	85
38	Electrochemical evaluation of CuFe2O4 samples obtained by sol–gel methods used as anodes in lithium batteries. Journal of Solid State Electrochemistry, 2008, 12, 729-737.	1.2	85
39	Synthesis and Electrochemical Reaction with Lithium of Mesoporous Iron Oxalate Nanoribbons. Inorganic Chemistry, 2008, 47, 10366-10371.	1.9	85
40	On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries. Fuel, 2010, 89, 986-991.	3.4	84
41	The Origin of Capacity Fading in NiFe ₂ O ₄ Conversion Electrodes for Lithium Ion Batteries Unfolded by ⁵⁷ Fe Mössbauer Spectroscopy. Journal of Physical Chemistry C, 2010, 114, 12828-12832.	1.5	81
42	A novel method for metal oxide deposition on carbon aerogels with potential application in capacitive deionization of saline water. Electrochimica Acta, 2014, 135, 208-216.	2.6	81
43	SnO reduction in lithium cells: study by X-ray absorption, 119Sn Mössbauer spectroscopy and X-ray diffraction. Journal of Electroanalytical Chemistry, 2000, 494, 136-146.	1.9	77
44	Lithium Storage Mechanisms and Effect of Partial Cobalt Substitution in Manganese Carbonate Electrodes. Inorganic Chemistry, 2012, 51, 5554-5560.	1.9	75
45	Recent advances in the study of layered lithium transition metal oxides and their application as intercalation electrodes. Journal of Solid State Electrochemistry, 1999, 3, 121-134.	1.2	74
46	Structural and comparative electrochemical study of M(II) oxalates, MÂ=ÂMn, Fe, Co, Ni, Cu, Zn. Journal of Power Sources, 2013, 227, 65-71.	4.0	73
47	EPR, NMR, and Electrochemical Studies of Surface-Modified Carbon Microbeads. Chemistry of Materials, 2006, 18, 2293-2301.	3.2	71
48	Microstructure of the epitaxial film of anatase nanotubes obtained at high voltage and the mechanism of its electrochemical reaction with sodium. CrystEngComm, 2014, 16, 4602-4609.	1.3	71
49	Electrochemical and chemical insertion/deinsertion of magnesium in spinel-type MgMn ₂ O ₄ and lambda-MnO ₂ for both aqueous and non-aqueous magnesium-ion batteries. CrystEngComm, 2015, 17, 8728-8735.	1.3	71
50	Electrochemical Interaction of Few-Layer Molybdenum Disulfide Composites vs Sodium: New Insights on the Reaction Mechanism. Chemistry of Materials, 2017, 29, 5886-5895.	3.2	71
51	X-ray Diffraction and119Sn Mössbauer Spectroscopy Study of a New Phase in the Bi2Se3â^'SnSe System:Â SnBi4Se7. Inorganic Chemistry, 1999, 38, 2131-2135.	1.9	68
52	Synergistic effects of transition metal substitution in conversion electrodes for lithium-ion batteries. Journal of Materials Chemistry, 2011, 21, 10102.	6.7	66
53	Low-temperature mixed spinel oxides as lithium insertion compounds. Journal of Materials Chemistry, 1996, 6, 37-39.	6.7	65
54	LiFePO 4 particle conductive composite strategies for improving cathode rate capability. Electrochimica Acta, 2015, 163, 323-329.	2.6	65

#	Article	IF	CITATIONS
55	Electrochemical reactions of polycrystalline CrSb2 in lithium batteries. Journal of Electroanalytical Chemistry, 2001, 501, 205-209.	1.9	64
56	Improving the cyclability of sodium-ion cathodes by selection of electrolyte solvent. Journal of Power Sources, 2012, 197, 314-318.	4.0	64
57	<i>P</i> 3â€Type Layered Sodiumâ€Deficient Nickel–Manganese Oxides: A Flexible Structural Matrix for Reversible Sodium and Lithium Intercalation. ChemPlusChem, 2015, 80, 1642-1656.	1.3	63
58	Applicability of Molybdite as an Electrode Material in Calcium Batteries: A Structural Study of Layer-type Ca _{<i>x</i>} MoO ₃ . Chemistry of Materials, 2018, 30, 5853-5861.	3.2	63
59	X-ray Diffraction, EPR, and 6Li and 27Al MAS NMR Study of LiAlO2â^'LiCoO2 Solid Solutions. Inorganic Chemistry, 1998, 37, 264-269.	1.9	62
60	Improved Energy Storage Solution Based on Hybrid Oxide Materials. ACS Sustainable Chemistry and Engineering, 2013, 1, 46-56.	3.2	61
61	Electrochemical studies of lithium and sodium intercalation in MoSe2. Solid State Ionics, 1996, 83, 57-64.	1.3	59
62	High-Performance Transition Metal Mixed Oxides in Conversion Electrodes:  A Combined Spectroscopic and Electrochemical Study. Journal of Physical Chemistry C, 2007, 111, 14238-14246.	1.5	58
63	Electrochemical, textural and microstructural effects of mechanical grinding on graphitized petroleum coke for lithium and sodium batteries. Carbon, 2003, 41, 3003-3013.	5.4	57
64	On the Mechanism of the Electrochemical Reaction of Tin Phosphide with Lithium. Journal of the Electrochemical Society, 2006, 153, A1829.	1.3	57
65	Electrochemical response of carbon aerogel electrodes in saline water. Journal of Electroanalytical Chemistry, 2012, 671, 92-98.	1.9	57
66	Cationic distribution and electrochemical performance of LiCo1/3Ni1/3Mn1/3O2 electrodes for lithium-ion batteries. Solid State Ionics, 2008, 179, 2198-2208.	1.3	55
67	Lithium/nickel mixing in the transition metal layers of lithium nickelate: high-pressure synthesis of layered Li[LixNi1â^'x]O2 oxides as cathode materials for lithium-ion batteries. Solid State Ionics, 2003, 161, 197-204.	1.3	54
68	New tin-based materials containing cobalt and carbon for lithium-ion batteries. Journal of Electroanalytical Chemistry, 2007, 605, 98-108.	1.9	54
69	High reversible sodium insertion into iron substituted Na1+xTi2â^'xFex(PO4)3. Journal of Power Sources, 2014, 252, 208-213.	4.0	54
70	Changes in Structure and Cathode Performance with Composition and Preparation Temperature of Lithium Cobalt Nickel Oxide. Journal of the Electrochemical Society, 1998, 145, 730-736.	1.3	53
71	Synergistic Effects of Double Substitution in LiNi[sub 0.5â^'y]Fe[sub y]Mn[sub 1.5]O[sub 4] Spinel as 5 V Cathode Materials. Journal of the Electrochemical Society, 2005, 152, A13.	1.3	53
72	EPR study on petroleum cokes annealed at different temperatures and used in lithium and sodium batteries. Carbon, 2002, 40, 2301-2306.	5.4	52

#	Article	IF	CITATIONS
73	Structure and Electrochemical Properties of Li1 â^' x  ( Ni y Co1 â^' y  ) 1 at 0°C. Journal of the Electrochemical Society, 1995, 142, 3997-4005.	+ x â† 1.3	€‰O
74	Lithiumâ^'Nickel Citrate Precursors for the Preparation of LiNiO2 Insertion Electrodes. Chemistry of Materials, 1997, 9, 2145-2155.	3.2	51
75	NASICON-type Na3V2(PO4)3 as a new positive electrode material forÂrechargeable aluminium battery. Electrochimica Acta, 2018, 260, 798-804.	2.6	51
76	Diffraction and XPS Studies of Misfit Layer Chalcogenides Intercalated with Cobaltocene. Chemistry of Materials, 1995, 7, 1576-1582.	3.2	50
77	Chemical and electrochemical lithium intercalation and staging in 2Hî—,SnS2. Solid State Ionics, 1992, 51, 133-138.	1.3	49
78	X-ray Diffraction,7Li MAS NMR Spectroscopy, and119Sn Mössbauer Spectroscopy Study of SnSb-Based Electrode Materials. Chemistry of Materials, 2002, 14, 2962-2968.	3.2	49
79	On the effect of carbon content for achieving a high performing Na3V2(PO4)3/C nanocomposite as cathode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2017, 784, 47-54.	1.9	49
80	X-ray diffraction, 57Fe Mössbauer and step potential electrochemical spectroscopy study of LiFeyCo1â~'yO2 compounds. Journal of Power Sources, 1999, 81-82, 547-553.	4.0	48
81	Lithium insertion mechanism in Sb-based electrode materials from 121Sb Mössbauer spectrometry. Journal of Power Sources, 2003, 119-121, 585-590.	4.0	48
82	New LiNi[sub y]Co[sub 1â^²2y]Mn[sub 1+y]O[sub 4] Spinel Oxide Solid Solutions as 5 V Electrode Material for Li-Ion Batteries. Journal of the Electrochemical Society, 2004, 151, A53.	1.3	48
83	⁵⁷ Fe Mössbauer Spectroscopy and Electron Microscopy Study of Metal Extraction from CuFe ₂ O ₄ Electrodes in Lithium Cells. ChemPhysChem, 2007, 8, 1999-2007.	1.0	47
84	Na3V2(PO4)3 as electrode material for rechargeable magnesium batteries: a case of sodium-magnesium hybrid battery. Electrochimica Acta, 2017, 246, 908-913.	2.6	47
85	On the role of faradaic and capacitive contributions in the electrochemical performance of CoFe2O4 as conversion anode for Li-ion cells. Solid State Ionics, 2010, 181, 616-622.	1.3	46
86	Improved lithium-ion transport in NASICON-type lithium titanium phosphate by calcium and iron doping. Solid State Ionics, 2014, 262, 573-577.	1.3	46
87	On the use of transition metal oxysalts as conversion electrodes in lithium-ion batteries. Journal of Power Sources, 2009, 189, 823-827.	4.0	45
88	On the Reliability of Sodium Co-Intercalation in Expanded Graphite Prepared by Different Methods as Anodes for Sodium-Ion Batteries. Journal of the Electrochemical Society, 2017, 164, A3804-A3813.	1.3	44
89	Aluminium coordination in LiNi1â~'yAlyO2 solid solutions. Solid State Ionics, 2000, 128, 1-10.	1.3	42
90	⁵⁷ Fe Mössbauer Spectroscopy Study of the Electrochemical Reaction with Lithium of MFe ₂ O ₄ (M = Co and Cu) Electrodes. Journal of Physical Chemistry C, 2009, 113, 20081-20087.	1.5	42

#	Article	IF	CITATIONS
91	Highâ€Performance Na3V2(PO4)3/C Cathode for Sodiumâ€Ion Batteries Prepared by a Ballâ€Millingâ€Assisted Method. European Journal of Inorganic Chemistry, 2016, 2016, 3212-3218.	1.0	42
92	Cobalt(III) Effect on27Al NMR Chemical Shifts in LiAlxCo1-xO2. Journal of Physical Chemistry B, 2001, 105, 8081-8087.	1.2	40
93	Transition metal oxide thin films with improved reversibility as negative electrodes for sodium-ion batteries. Electrochemistry Communications, 2013, 27, 152-155.	2.3	40
94	Treasure Na-ion anode from trash coke by adept electrolyte selection. Journal of Power Sources, 2017, 347, 127-135.	4.0	40
95	Textural evolution of synthetic γ-FeOOH during thermal treatment by differential scanning calorimetry. Journal of Colloid and Interface Science, 1984, 101, 392-400.	5.0	39
96	Optimized Chemical Stability and Electrochemical Performance of LiFePO[sub 4] Composite Materials Obtained by ZnO Coating. Journal of the Electrochemical Society, 2008, 155, A211.	1.3	39
97	Long-Length Titania Nanotubes Obtained by High-Voltage Anodization and High-Intensity Ultrasonication for Superior Capacity Electrode. Journal of Physical Chemistry C, 2012, 116, 20182-20190.	1.5	39
98	Effect of chromium doping on Na3V2(PO4)2F3@C as promising positive electrode for sodium-ion batteries. Journal of Electroanalytical Chemistry, 2020, 856, 113694.	1.9	39
99	Electrochemical Characteristics of Crystalline and Amorphous SnS2 in Lithium Cells. Journal of the Electrochemical Society, 1996, 143, 2847-2851.	1.3	38
100	A Functionalized Co ₂ P Negative Electrode for Batteries Demanding High Li-Potential Reaction. Journal of the Electrochemical Society, 2012, 159, A1253-A1261.	1.3	38
101	Nanocomposite Electrode for Li-Ion Microbatteries Based on SnO on Nanotubular Titania Matrix. Electrochemical and Solid-State Letters, 2009, 12, A186.	2.2	37
102	New mixed transition metal oxysalts as negative electrode materials for lithium-ion batteries. Solid State Ionics, 2012, 225, 518-521.	1.3	37
103	Improved Surface Stability of C+M _{<i>x</i>} O _{<i>y</i>} @Na ₃ V ₂ (PO ₄) ₃ Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries. ACS Applied Materials & amp; Interfaces, 2017, 9, 1471-1478.	sub> 4.0	37
104	Nanometric P2-Na2/3Fe1/3Mn2/3O2 with controlled morphology as cathode for sodium-ion batteries. Journal of Alloys and Compounds, 2017, 724, 465-473.	2.8	37
105	Superior electrochemical performance of TiO2 sodium-ion battery anodes in diglyme-based electrolyte solution. Journal of Power Sources, 2019, 432, 82-91.	4.0	37
106	Low-temperature hydrothermal transformations of LiCoO2 and HCoO2. Materials Research Bulletin, 1988, 23, 899-904.	2.7	36
107	Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries. Pure and Applied Chemistry, 2002, 74, 1885-1894.	0.9	36
108	Controlled Growth and Application in Lithium and Sodium Batteries of High-Aspect-Ratio, Self-Organized Titania Nanotubes. Journal of the Electrochemical Society, 2013, 160, A1390-A1398.	1.3	35

#	Article	IF	CITATIONS
109	Self-organized amorphous titania nanotubes with deposited graphene film like a new heterostructured electrode for lithium ion batteries. Journal of Power Sources, 2014, 248, 886-893.	4.0	35
110	Synthesis and Electrochemical Characterization of a New Li oâ€Mnâ€O Spinel Phase for Rechargeable Lithium Batteries. Journal of the Electrochemical Society, 1997, 144, 1939-1943.	1.3	34
111	EPR studies of Li1â^'x(NiyCo1â^'y)1+xO2 solid solutions. Solid State Communications, 1997, 102, 457-462.	0.9	34
112	Electrochemical and 119Sn Mössbauer studies of the reaction of Co2SnO4 with lithium. Electrochemistry Communications, 2006, 8, 731-736.	2.3	34
113	Influence of Solvent Evaporation Rate in the Preparation of Carbonâ€Coated Lithium Iron Phosphate Cathode Films on Battery Performance. Energy Technology, 2016, 4, 573-582.	1.8	34
114	Cation-deficient Mn, Co spinel oxides obtained by thermal decomposition of carbonate precursors. Journal of Solid State Chemistry, 1989, 82, 87-94.	1.4	33
115	Structural and Electrochemical Properties of Micro―and Nanoâ€Crystalline CoSn Electrode Materials. ChemPhysChem, 2008, 9, 1171-1177.	1.0	33
116	Improving the cycling performance of LiFePO ₄ cathode material by poly(3,4-ethylenedioxythiopene) coating. RSC Advances, 2014, 4, 26108-26114.	1.7	33
117	Effect of the degree of porosity on the performance of poly(vinylidene) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Solid State Ionics, 2015, 280, 1-9.	Tf 50 427 1.3	Td (fluoride∹t 33
118	On the Effect of Silicon Substitution in Na ₃ V ₂ (PO ₄) ₃ on the Electrochemical Behavior as Cathode for Sodiumâ€ion Batteries. ChemElectroChem, 2018, 5, 367-374.	1.7	33
119	Lithium intercalation into PbNb2S5, PbNbS3, SnNb2Se5, BiVS3, SnVSe3, and PbNb2Se5 misfit layer chalcogenides. Journal of Solid State Chemistry, 1992, 100, 262-271.	1.4	32
120	Electrochemical,6Li MAS NMR, and X-ray and Neutron Diffraction Study of LiCoxFeyMn2-(x+y)O4Spinel Oxides for High-Voltage Cathode Materials. Chemistry of Materials, 2003, 15, 1210-1216.	3.2	32
121	Electrodeposited CoSn2 on nickel open-cell foam: advancing towards high power lithium ion and sodium ion batteries. CrystEngComm, 2013, 15, 9196.	1.3	32
122	Mn-Containing N-Doped Monolithic Carbon Aerogels with Enhanced Macroporosity as Electrodes for Capacitive Deionization. ACS Sustainable Chemistry and Engineering, 2016, 4, 2487-2494.	3.2	32
123	On the benefits of Cr substitution on Na4MnV(PO4)3 to improve the high voltage performance as cathode for sodium-ion batteries. Journal of Power Sources, 2021, 495, 229811.	4.0	32
124	Tin oxalate as a precursor of tin dioxide and electrode materials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2001, 6, 55-62.	1.2	31
125	EPR studies of Li deintercalation from LiCoMnO4 spinel-type electrode active material. Journal of Power Sources, 2006, 159, 1389-1394.	4.0	31
126	Electron Paramagnetic Resonance, X-ray Diffraction, Mössbauer Spectroscopy, and Electrochemical Studies on Nanocrystalline FeSn ₂ Obtained by Reduction of Salts in Tetraethylene Glycol. Chemistry of Materials, 2010, 22, 2268-2275.	3.2	31

#	Article	IF	CITATIONS
127	Tin-Based composite Materials Fabricated by Anodic Oxidation for the Negative Electrode of Li-Ion Batteries. Journal of the Electrochemical Society, 2011, 158, A1094.	1.3	31
128	Mesoporous carbon black-aerogel composites with optimized properties for the electro-assisted removal of sodium chloride from brackish water. Journal of Electroanalytical Chemistry, 2015, 741, 42-50.	1.9	31
129	On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochimica Acta, 2015, 170, 154-163.	2.6	30
130	Local Coordination of Low-Spin Ni3+ Probes in Trigonal LiAlyCo1-yO2 Monitored by HF-EPR. Journal of Physical Chemistry B, 2004, 108, 4053-4057.	1.2	29
131	Tin–carbon composites as anodic material in Li-ion batteries obtained by copyrolysis of petroleum vacuum residue and SnO2. Carbon, 2007, 45, 1396-1409.	5.4	29
132	The influence of iron substitution on the electrochemical properties of Li1+xTi2â ^{~2} xFex(PO4)3/C composites as electrodes for lithium batteries. Journal of Materials Chemistry, 2012, 22, 21602.	6.7	29
133	Exploring the high-voltage Mg ²⁺ /Na ⁺ co-intercalation reaction of Na ₃ VCr(PO ₄) ₃ in Mg-ion batteries. Journal of Materials Chemistry A, 2019, 7, 18081-18091.	5.2	29
134	Highly dispersed oleic-induced nanometric C@Na3V2(PO4)2F3 composites for efficient Na-ion batteries. Electrochimica Acta, 2020, 332, 135502.	2.6	29
135	Changes in crystallite size and microstrains of hematite derived from the thermal decomposition of synthetic akaganeite. Journal of Solid State Chemistry, 1984, 53, 303-312.	1.4	28
136	Rotor blade grinding and re-annealing of LiCoO2: SEM, XPS, EIS and electrochemical study. Journal of Electroanalytical Chemistry, 2005, 584, 147-156.	1.9	28
137	Changes in local Ni/Mn environment in layered LiMgxNi0.5â^'xMn0.5O2(0 ≤ ≤0.10) after electrochemical extraction and reinsertion of lithium. Journal of Materials Chemistry, 2006, 16, 359-369.	6.7	28
138	Improving the Performance of Titania Nanotube Battery Materials by Surface Modification with Lithium Phosphate. ACS Applied Materials & Interfaces, 2014, 6, 5669-5678.	4.0	28
139	High Performance Full Sodiumâ€lon Cell Based on a Nanostructured Transition Metal Oxide as Negative Electrode. Chemistry - A European Journal, 2015, 21, 14879-14885.	1.7	28
140	New tin-containing spinel sulfide electrodes for ambient temperature rocking chair cells. Journal of Power Sources, 1996, 62, 101-105.	4.0	27
141	Preparation, Sintering, and Electrochemical Properties of Tin Dioxide and Al-Doped Tin Dioxides Obtained from Citrate Precursors. Chemistry of Materials, 2000, 12, 3044-3051.	3.2	27
142	Structure and Lithium Extraction Mechanism in LiNi0.5Mn1.5O4 after Double Substitution with Iron and Titanium. Electrochemical and Solid-State Letters, 2006, 9, A96-A100.	2.2	27
143	Truly quasi-solid-state lithium cells utilizing carbonate free polymer electrolytes on engineered LiFePO4. Electrochimica Acta, 2016, 199, 172-179.	2.6	27
144	Exploring an Aluminum Ion Battery Based on Molybdite as Working Electrode and Ionic Liquid as Electrolyte. Journal of the Electrochemical Society, 2018, 165, A2994-A2999.	1.3	27

#	Article	IF	CITATIONS
145	Lithium insertion mechanism in CoSb3analysed by121Sb Mössbauer spectrometry, X-ray absorption spectroscopy and electronic structure calculations. Journal of Materials Chemistry, 2004, 14, 1759-1767.	6.7	26
146	Electrochemical Reaction of Lithium with Nanocrystalline CoSn[sub 3]. Electrochemical and Solid-State Letters, 2008, 11, A209.	2.2	26
147	NiMn2â^'Fe O4 prepared by a reverse micelles method as conversion anode materials for Li-ion batteries. Materials Chemistry and Physics, 2010, 124, 102-108.	2.0	26
148	Improved electro-assisted removal of phosphates and nitrates using mesoporous carbon aerogels with controlled porosity. Journal of Applied Electrochemistry, 2014, 44, 963-976.	1.5	26
149	Electrodeposition of copper–tin nanowires on Ti foils for rechargeable lithium micro-batteries with high energy density. Journal of Alloys and Compounds, 2014, 585, 331-336.	2.8	26
150	Induced Rate Performance Enhancement in Offâ€Stoichiometric Na _{3+3<i>x</i>} V _{2â^'<i>x</i>} (PO ₄) ₃ with Potential Applicability as the Cathode for Sodiumâ€Ion Batteries. Chemistry - A European Journal, 2017, 23, 7345-7352.	1.7	26
151	Increasing Energy Density with Capacity Preservation by Aluminum Substitution in Sodium Vanadium Phosphate. ACS Applied Materials & Interfaces, 2020, 12, 21651-21660.	4.0	26
152	Mechanochemical preparation and thermal stability of γ-Fe2O3 derived from γ-FeOOH. Materials Research Bulletin, 1987, 22, 513-520.	2.7	25
153	Acid-Delithiated Li1-x(NiyCo1-y)1+xO2 as Insertion Electrodes in Lithium Batteries. Journal of Solid State Chemistry, 1994, 113, 182-192.	1.4	25
154	New doped Li-M-Mn-O (M = Al, Fe, Ni) spinels as cathodes for rechargeable 3 V lithium batteries. Journal of Solid State Electrochemistry, 1998, 2, 420-426.	1.2	25
155	13C, 1H, 6Li Magic-Angle Spinning Nuclear Magnetic Resonance, Electron Paramagnetic Resonance, and Fourier Transform Infrared Study of Intercalation Electrodes Based in Ultrasoft Carbons Obtained below 3100 K. Chemistry of Materials, 1999, 11, 52-60.	3.2	25
156	Electrochemical reactions of lithium with Li2ZnGe and Li2ZnSi. Electrochimica Acta, 2002, 47, 1115-1120.	2.6	25
157	X-ray Absorption Spectroscopic Study of LiCoO2 as the Negative Electrode of Lithium-Ion Batteries. ChemPhysChem, 2006, 7, 1086-1091.	1.0	25
158	The electrochemical behavior of low-temperature synthesized FeSn2 nanoparticles as anode materials for Li-ion batteries. Journal of Power Sources, 2011, 196, 6768-6771.	4.0	25
159	Lithium ferrite formation by precipitation from Fe(III) solutions. Journal of Solid State Chemistry, 1988, 77, 132-140.	1.4	24
160	Structural aspects of lithium intercalated PbVS3, PbTiS3, PbTi2S5 and SnNbS3 misfit layer compounds. Materials Research Bulletin, 1991, 26, 1211-1218.	2.7	24
161	Evaluation of discharge and cycling properties of skutterudite-type Co1â^'2yFeyNiySb3 compounds in lithium cells. Journal of Power Sources, 2002, 107, 74-79.	4.0	24
162	Optimization of the Electrochemical Behavior of Vapor Grown Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. Journal of the Electrochemical Society, 2005, 152, A1797.	1.3	24

#	Article	IF	CITATIONS
163	Elucidation of Capacity Fading on CoFe[sub 2]O[sub 4] Conversion Electrodes for Lithium Batteries Based on [sup 57]Fe Molˆssbauer Spectroscopy. Journal of the Electrochemical Society, 2009, 156, A589.	1.3	24
164	Nanobelts of Beta-Sodium Vanadate as Electrode for Magnesium and Dual Magnesium-Sodium Batteries. Journal of the Electrochemical Society, 2016, 163, A2781-A2790.	1.3	24
165	Effect of the synthesis procedure on the local cationic distribution in layered LiNi1/2Mn1/2O2. Journal of Alloys and Compounds, 2009, 475, 96-101.	2.8	23
166	Nanocrystalline CoSn2-carbon composite electrode prepared by using sonochemistry. Ultrasonics Sonochemistry, 2012, 19, 352-357.	3.8	23
167	Electrosorption of environmental concerning anions on a highly porous carbon aerogel. Journal of Electroanalytical Chemistry, 2013, 708, 80-86.	1.9	23
168	An Unnoticed Inorganic Solid Electrolyte: Dilithium Sodium Phosphate with the Nalipoite Structure. Inorganic Chemistry, 2014, 53, 2310-2316.	1.9	23
169	Co/Mn distribution and electrochemical intercalation of Li into Li[Mn2â^'yCoy]O4 spinels, 0 <yâ‰⊉. solid<br="">State Ionics, 2001, 140, 19-33.</yâ‰⊉.>	1.3	22
170	Electron Paramagnetic Resonance and Solid-State NMR Study of Cation Distribution in LiGayCo1-yO2and Effects on the Electrochemical Oxidation. Journal of Physical Chemistry B, 2003, 107, 4290-4295.	1.2	22
171	Influence of oxidative stabilization on the electrochemical behaviour of coal tar pitch derived carbons in lithium batteries. Electrochimica Acta, 2005, 50, 1225-1232.	2.6	22
172	A facile carbothermal preparation of Sn–Co–C composite electrodes for Li-ion batteries using low-cost carbons. Journal of Solid State Electrochemistry, 2012, 16, 953-962.	1.2	22
173	Enhancing the energy density of safer Li-ion batteries by combining high-voltage lithium cobalt fluorophosphate cathodes and nanostructured titania anodes. Scientific Reports, 2016, 6, 20656.	1.6	22
174	On the Mechanism of Magnesium Storage in Micro- and Nano-Particulate Tin Battery Electrodes. Nanomaterials, 2018, 8, 501.	1.9	22
175	Mechanochemical preparation and degradation of LiCoO2. Reactivity of Solids, 1987, 4, 163-171.	0.3	21
176	Electrochemical lithium intercalation into misfit layer sulfides. Chemistry of Materials, 1992, 4, 1021-1026.	3.2	21
177	Lithium intercalation and copper extraction in spinel sulfides of general formula Cu2MSn3S8(M = Mn,) Tj ETQq1	1	l4rgBT /Ov∈
178	New NixMg6â^'xMnO8 Mixed Oxides as Active Materials for the Negative Electrode of Lithium-Ion Cells. Journal of Solid State Chemistry, 2002, 166, 330-335.	1.4	21
179	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2161.	5.4	21
180	Effects of heteroatoms and nanosize on tin-based electrodes. Journal of Power Sources, 2009, 189, 309-314.	4.0	21

#	Article	IF	CITATIONS
181	Sodium storage behavior of Na0.66Ni0.33Ë—xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes. Journal of Power Sources, 2018, 400, 317-324.	4.0	21
182	Reversible Multi-Electron Storage Enabled by Na5V(PO4)2F2 for Rechargeable Magnesium Batteries. Energy Storage Materials, 2021, 38, 462-472.	9.5	21
183	A Raman study of the misfit layer compounds, (SnS)1.17NbS2 and (PbS)1.18 TiS2. Journal of Raman Spectroscopy, 1992, 23, 647-651.	1.2	20
184	121Sb Mössbauer and X-ray Photoelectron Spectroscopy Studies of the Electronic Structure of Some Antimony Misfit Layer Compounds. Chemistry of Materials, 1997, 9, 1393-1398.	3.2	20
185	VSe2â^'ySy electrodes in lithium and lithium-ion cells. Journal of Applied Electrochemistry, 1997, 27, 1207-1211.	1.5	20
186	Iron–carbon composites as electrode materials in lithium batteries. Carbon, 2006, 44, 1762-1772.	5.4	20
187	Cobalt Oxide Nanoparticles Prepared from Reverse Micelles as High-Capacity Electrode Materials for Li-Ion Cells. Electrochemical and Solid-State Letters, 2008, 11, A198.	2.2	20
188	Electrochemical performance and local cationic distribution in layered LiNi1/2Mn1/2O2 electrodes for lithium ion batteries. Electrochimica Acta, 2009, 54, 1694-1701.	2.6	20
189	Sn–Co–C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 139-148.	1.2	20
190	A fractal-like electrode based on double-wall nanotubes of anatase exhibiting improved electrochemical behaviour in both lithium and sodium batteries. Physical Chemistry Chemical Physics, 2015, 17, 4687-4695.	1.3	20
191	Iron Oxide–Iron Sulfide Hybrid Nanosheets as High-Performance Conversion-Type Anodes for Sodium-Ion Batteries. ACS Applied Energy Materials, 2020, 3, 10765-10775.	2.5	20
192	Electrochemical lithium insertion into In16Sn4S32 and Cu4In20S32 spinel sulphides. Journal of Alloys and Compounds, 1995, 217, 176-180.	2.8	19
193	Modification of Petroleum Coke for Lithium-Ion Batteries by Heat-Treatment with Iron Oxide. Journal of the Electrochemical Society, 2004, 151, A2113.	1.3	19
194	Oxidized FeCoNi alloys as novel anode in Li-ion batteries. Electrochemistry Communications, 2011, 13, 1427-1430.	2.3	19
195	Synthesis of Porous and Mechanically Compliant Carbon Aerogels Using Conductive and Structural Additives. Gels, 2016, 2, 4.	2.1	19
196	Low-temperature hydrothermal formation and ion exchange of hydrated sodium manganates. Solid State Ionics, 1990, 44, 125-130.	1.3	18
197	Metal—support interaction effects in the liquid-phase selective hydrogenation of 1,4-butynediol with nickel catalysts supported on AlPO4 and on other conventional non-reducible compounds. Journal of Molecular Catalysis, 1993, 85, 305-325.	1.2	18
198	Novel layered chalcogenides as electrode materials for lithium-ion batteries. Journal of Power Sources, 1997, 68, 704-707.	4.0	18

#	Article	IF	CITATIONS
199	Fe3+ and Ni3+ impurity distribution and electrochemical performance of LiCoO2 electrode materials for lithium ion batteries. Journal of Power Sources, 2009, 194, 494-501.	4.0	18
200	CoSn-graphite electrode material prepared by using the polyol method and high-intensity ultrasonication. Electrochimica Acta, 2011, 56, 9808-9817.	2.6	18
201	In Situ X-ray Diffraction Study of Electrochemical Insertion in Mg _{0.5} Ti ₂ (PO ₄) ₃ : An Electrode Material for Lithium or Sodium Batteries. Journal of the Electrochemical Society, 2012, 159, A1716-A1721.	1.3	18
202	Tunable Ti ⁴⁺ /Ti ³⁺ Redox Potential in the Presence of Iron and Calcium in NASICON-Type Related Phosphates as Electrodes for Lithium Batteries. Chemistry of Materials, 2013, 25, 4025-4035.	3.2	18
203	CTAB-Assisted Synthesis of C@Na3V2(PO4)2F3 With Optimized Morphology for Application as Cathode Material for Na-Ion Batteries. Frontiers in Physics, 2019, 7, .	1.0	18
204	Thermal behaviour of chemically deintercalated Li1â^'1Ni1+xO2. Journal of Thermal Analysis, 1992, 38, 295-301.	0.7	17
205	SnHPO4: a promising precursor for active material as negative electrode in Li-ion cells. Electrochimica Acta, 2001, 47, 489-493.	2.6	17
206	High-pressure synthesis and electrochemical behavior of layered oxides. Journal of Solid State Chemistry, 2005, 178, 2692-2700.	1.4	17
207	A 57Fe Mössbauer spectroscopy study of cobalt ferrite conversion electrodes for Li-ion batteries. Journal of Power Sources, 2011, 196, 6978-6981.	4.0	17
208	Electrodeposited Polyacrylonitrile and Cobalt-Tin Composite Thin Film on Titanium Substrate. Journal of the Electrochemical Society, 2012, 159, A1028-A1033.	1.3	17
209	Composition and cation-vacancy distribution of cation-deficient spinel oxides. Journal of Solid State Chemistry, 1991, 93, 443-453.	1.4	16
210	SPES, 6Li MAS NMR, and Ni3+ EPR evidence for the formation of Co2+-containing spinel phases in LiCoO2 cycled electrode materials. Journal of Electroanalytical Chemistry, 1998, 454, 173-181.	1.9	16
211	Cobalt and tin oxalates and PAN mixture as a new electrode material for lithium ion batteries. Journal of Electroanalytical Chemistry, 2010, 642, 143-149.	1.9	16
212	Improving the electrochemical performance of titanium phosphate-based electrodes in sodium batteries by lithium substitution. Journal of Materials Chemistry A, 2013, 1, 13963.	5.2	16
213	Exploring a Li-ion battery using surface modified titania nanotubes versus high voltage cathode nanowires. Journal of Power Sources, 2016, 303, 194-202.	4.0	16
214	On the influence of particle morphology to provide high performing chemically desodiated C@NaV2(PO4)3 as cathode for rechargeable magnesium batteries. Journal of Electroanalytical Chemistry, 2018, 827, 128-136.	1.9	16
215	Electrochemical intercalation of sodium into PbNbS3 and PbNb2S5 misfit layer compounds. Solid State lonics, 1992, 58, 179-184.	1.3	15
216	Kinetics of intercalation of lithium and sodium into lead sulfide-niobium sulfide ((PbS)1.14(NbS2)2). Chemistry of Materials, 1993, 5, 1167-1173.	3.2	15

#	Article	IF	CITATIONS
217	Local Effects of the Lithium Insertion into Cation-Deficient Tinâ^'Indium Thiospinels Revealed by119Sn Mössbauer Spectroscopy. Chemistry of Materials, 1998, 10, 968-973.	3.2	15
218	Structural Characterization and Electrochemical Reactions with Lithium of Cu2CoTixSn3-xS8Solid Solutions. Chemistry of Materials, 1999, 11, 2687-2693.	3.2	15
219	High-pressure synthesis of Ga-substituted LiCoO2with layered crystal structure. Journal of Materials Chemistry, 2002, 12, 2501-2506.	6.7	15
220	Comparative analysis of the changes in local Ni/Mn environment in lithium–nickel–manganese oxides with layered and spinel structure during electrochemical extraction and reinsertion of lithium. Journal of Power Sources, 2007, 174, 519-523.	4.0	15
221	PAN-Encapsulated Nanocrystalline CoSn[sub 2] Particles as Negative Electrode Active Material for Lithium-Ion Batteries. Journal of the Electrochemical Society, 2010, 157, A666.	1.3	15
222	Nanocrystalline Fe1â^'xCoxSn2 solid solutions prepared by reduction of salts in tetraethylene glycol. Journal of Alloys and Compounds, 2011, 509, 3074-3079.	2.8	15
223	Electrochemical performance of the lithium insertion in Mn0.5â^'xCoxTi2(PO4)3/C composites (x=0,) Tj ETQq1 1	0.784314 2.6	rgBT /Overlo
224	Insight into the Electrochemical Sodium Insertion of Vanadium Superstoichiometric NASICON Phosphate. Inorganic Chemistry, 2017, 56, 11845-11853.	1.9	15
225	Effect of the Mn/V ratio to optimize the kinetic properties of Na3+xMnxV1-xCr(PO4)3 positive electrode for sodium-ion batteries. Electrochimica Acta, 2021, 375, 137982.	2.6	15
226	On the Structure and Electrochemical Reactions with Lithium of Tin(II) Phosphate Chloride. Journal of the Electrochemical Society, 2000, 147, 1663.	1.3	14
227	Lithium Insertion into Modified Conducting Domains of Graphitized Carbon Nanotubes. Journal of the Electrochemical Society, 2007, 154, A964.	1.3	14
228	Effect of the resorcinol/catalyst ratio in the capacitive performance of carbon xerogels with potential use in sodium chloride removal from saline water. Journal of Solid State Electrochemistry, 2014, 18, 2847-2856.	1.2	14
229	Judicious design of lithium iron phosphate electrodes using poly(3,4-ethylenedioxythiophene) for high performance batteries. Journal of Materials Chemistry A, 2015, 3, 14254-14262.	5.2	14
230	On the correlation between the porous structure and the electrochemical response of powdered and monolithic carbon aerogels as electrodes for capacitive deionization. Journal of Solid State Chemistry, 2016, 242, 21-28.	1.4	14
231	A theoretical and experimental study of hexagonal molybdenum trioxide as dual-ion electrode for rechargeable magnesium battery. Journal of Alloys and Compounds, 2020, 831, 154795.	2.8	14
232	Waste Pd/Fish-Collagen as anode for energy storage. Renewable and Sustainable Energy Reviews, 2020, 131, 109968.	8.2	14
233	Texture, crystallinity, and catalytic properties of Co3O4 obtained by thermal and mechanical treatments. Journal of Colloid and Interface Science, 1986, 110, 172-180.	5.0	13
234	X-ray line broadening in haematite derived fromδ-FeOOH by thermal and mechanical procedures. Journal of Materials Science Letters, 1986, 5, 1295-1297.	0.5	13

#	Article	IF	CITATIONS
235	Preferential X-ray line Broadening and Thermal Behavior of gamma-Fe2O3. Journal of the American Ceramic Society, 1989, 72, 1244-1246.	1.9	13
236	Cation-deficient Mn-Co spinel oxides as electrode material for rechargeable lithium batteries. Electrochimica Acta, 1994, 39, 339-345.	2.6	13
237	Microstructure and intercalation properties of petrol cokes obtained at 1400°C. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 39, 216-223.	1.7	13
238	SnSeyS2 â^' y cathodic materials in lithium and sodium cells. Electrochimica Acta, 1997, 42, 357-367.	2.6	13
239	Chromium substitution in ion exchanged Li3Fe2(PO4)3 and the effects on the electrochemical behavior as cathodes for lithium batteries. Electrochimica Acta, 2012, 62, 124-131.	2.6	13
240	Self-organized sodium titanate/titania nanoforest for the negative electrode of sodium-ion microbatteries. Journal of Alloys and Compounds, 2015, 646, 816-826.	2.8	13
241	On the use of guanidine hydrochloride soft template in the synthesis of Na2/3Ni1/3Mn2/3O2 cathodes for sodium-ion batteries. Journal of Alloys and Compounds, 2019, 789, 1035-1045.	2.8	13
242	Hydrated lithium intercalation compounds of misfit layer sulfides. Chemistry of Materials, 1992, 4, 2-4.	3.2	12
243	Raman study and lattice dynamics calculations of misfit layered compounds : (PbS)1.18TiS2 and (PbS)1.12VS2. Journal of Molecular Structure, 1995, 348, 107-110.	1.8	12
244	Electrochemical Sodium Insertion into MnCo Oxide. Electrochemical and Solid-State Letters, 1999, 2, 545.	2.2	12
245	Composite electrode materials for lithium-ion batteries obtained by metal oxide addition to petroleum vacuum residua. Carbon, 2005, 43, 923-936.	5.4	12
246	Tin Phosphate Electrode Materials Prepared by the Hydrolysis of Tin Halides for Application in Lithium Ion Battery. Journal of Physical Chemistry C, 2009, 113, 5316-5323.	1.5	12
247	Improving the Electrochemical Properties of Self-Organized Titanium Dioxide Nanotubes in Lithium Batteries by Surface Polyacrylonitrile Electropolymerization. Journal of the Electrochemical Society, 2013, 160, A3026-A3035.	1.3	12
248	Microwave-assisted hydrothermal synthesis of magnetite nanoparticles with potential use as anode in lithium ion batteries. Materials Research, 2014, 17, 1065-1070.	0.6	12
249	High-intensity ultrasonication as a way to prepare graphene/amorphous iron oxyhydroxide hybrid electrode with high capacity in lithium battery. Ultrasonics Sonochemistry, 2015, 24, 238-246.	3.8	12
250	Self-Organized, Anatase, Double-Walled Nanotubes Prepared by Anodization under Voltage Ramp as Negative Electrode for Aqueous Sodium-Ion Batteries. Journal of the Electrochemical Society, 2015, 162, A3007-A3012.	1.3	12
251	Self-assembled Li4Ti5O12/TiO2/Li3PO4 for integrated Li–ion microbatteries. Electrochemistry Communications, 2015, 56, 61-64.	2.3	12
252	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. Journal of Thermal Analysis, 1984, 29, 479-489.	0.7	11

#	Article	IF	CITATIONS
253	Changes in crystallinity and thermal effects in ground vaterite. Journal of Materials Science, 1985, 20, 941-946.	1.7	11
254	Effect of grinding in synthetic akaganeite. Journal of Colloid and Interface Science, 1986, 113, 212-217.	5.0	11
255	Preparation and Characterization of New Misfit Layer Selenides SnVSe3and SnNb2Se5. Chemistry Letters, 1991, 20, 1981-1984.	0.7	11
256	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe Mössbauer spectroscopy. Hyperfine Interactions, 2012, 207, 53-59.	0.2	11
257	Optimization of tin intermetallics and composite electrodes for lithium-ion batteries obtained by sonochemical synthesis. Journal of Solid State Electrochemistry, 2013, 17, 2495-2501.	1.2	11
258	Limitations in the formal kinetic analysis of isothermal and thermogravimetric data. Thermochimica Acta, 1985, 85, 287-290.	1.2	10
259	Mn and Co substitution in ?-FeOOH and its decomposition products. Journal of Materials Science, 1990, 25, 5207-5214.	1.7	10
260	Lithium insertion into pyrochlore WO3. Solid State Ionics, 1991, 48, 231-240.	1.3	10
261	Chain Cluster Polymerization and Alkali Metal Intercalation into Niobium Ditelluride. Inorganic Chemistry, 1994, 33, 3164-3168.	1.9	10
262	Structural and Local Environment Modifications in a Chemically Lithiated Iron Thiospinel. Journal of Solid State Chemistry, 1997, 134, 238-247.	1.4	10
263	Electrochemical lithium and sodium intercalation into the tantalum-rich layered chalcogenides Ta2Se and Ta2Te3. Journal of Alloys and Compounds, 1999, 282, 93-100.	2.8	10
264	Effects of Partial Acid Delithiation on the Electrochemical Lithium Insertion Properties of Nickel-Stabilized LiMn2O4 Spinel Oxides. Journal of Solid State Chemistry, 2000, 150, 196-203.	1.4	10
265	Li-to-Network Interaction in Electrochemically Lithiated Tin Hydrogen Phosphate. Journal of the Electrochemical Society, 2002, 149, A1030.	1.3	10
266	119Sn Mössbauer spectroscopy: a powerful tool to unfold the reaction mechanism in advanced electrodes for lithium-ion batteries. Hyperfine Interactions, 2008, 187, 13-17.	0.2	10
267	Local Coordination of Fe ³⁺ in Layered LiCo _{1â~'<i>y</i>} Al _{<i>y</i>} O ₂ Oxides Determined by High-Frequency Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2009, 48, 4798-4805.	1.9	10
268	FeSn2-Polyacrylonitrile Electrode Obtained by Using High-Intensity Ultrasonication. Electrochemical and Solid-State Letters, 2011, 14, A148.	2.2	10
269	Exploring hybrid Mg2+/H+ reactions of C@MgMnSiO4 with boosted voltage in magnesium-ion batteries. Electrochimica Acta, 2022, 404, 139738.	2.6	10
270	Relationships between composition and surface properties of the dehydration products of synthetic manganite. Surface and Coatings Technology, 1986, 27, 343-350.	2.2	9

#	Article	IF	CITATIONS
271	Synthesis and alteration of ?-LiFeO2 by mechanochemical processes. Journal of Materials Science, 1988, 23, 2971-2974.	1.7	9
272	Mixed Co,Fe oxides prepared by thermal or mechanical treatment of carbonate precursors. Reactivity of Solids, 1989, 7, 235-248.	0.3	9
273	Ion exchange of potassium hexatungstate (K0.30WO3.15) by protons. Solid State Ionics, 1991, 47, 75-79.	1.3	9
274	Lithium/n-alkylamine intercalation into lead, vanadium misfit layer sulfide. Materials Research Bulletin, 1993, 28, 469-476.	2.7	9
275	Lithium and sodium intercalation into VTe2. Journal of Materials Chemistry, 1993, 3, 1271-1274.	6.7	9
276	Optical, Raman and resonance Raman spectra and lattice dynamics calculations of the misfit layer compounds, (SnS)1.17NbS2 and (PbS)1.18TiS2. Chemical Physics, 1994, 181, 377-392.	0.9	9
277	Structural, Thermodynamic, and Kinetic Properties of Alkali-Metal Intercalation into Group 5 Metal Ditellurides. Chemistry of Materials, 1995, 7, 1171-1177.	3.2	9
278	Local environment of tin in layeredSnSe2xS2(1â^'x)compounds by119Sn Mössbauer spectroscopy. Physical Review B, 1997, 56, 6371-6375.	1.1	9
279	Electrochemical and 119Sn Mössbauer study of sulfospinels as anode materials for lithium-ion batteries. Electrochimica Acta, 2000, 46, 127-135.	2.6	9
280	X-ray and neutron diffraction, 57Fe Mössbauer spectroscopy and X-ray absorption spectroscopy studies of iron-substituted lithium cobaltate. Solid State Communications, 2000, 115, 1-6.	0.9	9
281	Understanding the voltage profile of Li insertion into LiNi0.5â^'yFeyMn1.5O4 in Li cells. Electrochimica Acta, 2004, 49, 1963-1967.	2.6	9
282	Effect of the high pressure on the structure and intercalation properties of lithium–nickel–manganese oxides. Journal of Solid State Chemistry, 2007, 180, 1816-1825.	1.4	9
283	Polyacrylonitrile and cobalt–tin compounds based composite and its electrochemical properties in lithium ion batteries. Journal of Alloys and Compounds, 2009, 485, 385-390.	2.8	9
284	Comparative study of composite electrodes containing tin, polyacrylonitrile and cobalt or iron. Journal of Power Sources, 2011, 196, 2893-2898.	4.0	9
285	Novel fabrication technologies of 1D TiO _{2 nanotubes, vertical tin and iron-based nanowires for Li-ion microbatteries. International Journal of Nanotechnology, 2012, 9, 260.}	0.1	9
286	Ordered mesoporous titanium oxide for thin film microbatteries with enhanced lithium storage. Electrochimica Acta, 2015, 166, 293-301.	2.6	9
287	Theoretical and Experimental Study on the Electrochemical Behavior of Beta-Sodium Vanadate in Rechargeable Magnesium Batteries Using Several Electrolyte Solutions. Journal of the Electrochemical Society, 2020, 167, 070512.	1.3	9
288	Iron substitution in Na4VMn(PO4)3 as a strategy for improving the electrochemical performance of sodium-ion batteries. Journal of Electroanalytical Chemistry, 2021, 895, 115533.	1.9	9

#	Article	IF	CITATIONS
289	Marine shrimp/tin waste as a negative electrode for rechargeable sodium-ion batteries. Journal of Cleaner Production, 2022, 359, 131994.	4.6	9
290	Thermal behaviour of synthetic akaganeite under different experimental conditions. Thermochimica Acta, 1985, 92, 525-528.	1.2	8
291	Changes in the kinetics of the vaterite-calcite transformation with temperature and sample crystallinity. Journal of Materials Science, 1986, 21, 947-952.	1.7	8
292	Effect of crystallinity in the thermal behaviour of nickel hydroxide. Journal of Materials Science, 1986, 21, 3668-3672.	1.7	8
293	On the ultrastructure and morphology of colloidal cobalt ferrite. Journal of the Chemical Society Chemical Communications, 1987, , 365.	2.0	8
294	119Sn Moessbauer Spectroscopy of Some Misfit Layer Sulfides. Chemistry of Materials, 1995, 7, 1193-1197.	3.2	8
295	Composition and electrochemical properties of LiCu x Mn2?x O4 and LiCu0.5?y Al y Mn1.5O4. Journal of Solid State Electrochemistry, 2004, 8, 521.	1.2	8
296	Influence of the oxidative stabilisation treatment time on the electrochemical performance of anthracene oils cokes as electrode materials for lithium batteries. Journal of Power Sources, 2006, 161, 1324-1334.	4.0	8
297	Improved Electrochemical Performance of Tin Dioxide Using a Tin Phosphate-Based Coating. Electrochemical and Solid-State Letters, 2007, 10, A286.	2.2	8
298	Unfolding Tin–Cobalt Interactions in Oxide-Based Composite Electrodes for Li-Ion Batteries by Mössbauer Spectroscopy. ChemPhysChem, 2007, 8, 80-86.	1.0	8
299	On the use of the reverse micelles synthesis of nanomaterials for lithium-ion batteries. Journal of Solid State Electrochemistry, 2010, 14, 1749-1753.	1.2	8
300	Improved coulombic efficiency in nanocomposite thin film based on electrodeposited-oxidized FeNi-electrodes for lithium-ion batteries. Journal of Alloys and Compounds, 2013, 557, 82-90.	2.8	8
301	Electrochemical in battery polymerization of poly(alkylenedioxythiophene) over lithium iron phosphate for high-performance cathodes. Physical Chemistry Chemical Physics, 2014, 16, 20724-20730.	1.3	8
302	Morphological adaptability of graphitic carbon nanofibers to enhance sodium insertion in a diglyme-based electrolyte. Dalton Transactions, 2019, 48, 5417-5424.	1.6	8
303	On the Beneficial Effect of MgCl2 as Electrolyte Additive to Improve the Electrochemical Performance of Li4Ti5O12 as Cathode in Mg Batteries. Nanomaterials, 2019, 9, 484.	1.9	8
304	Kinetic study of the thermal decomposition of cobalt(III) oxyhydroxide. Journal of Thermal Analysis, 1984, 29, 491-501.	0.7	7
305	Mechanical dehydration of \hat{I}^3 -FeOOH by wet grinding procedures. Journal of the Chemical Society Chemical Communications, 1984, , 559-560.	2.0	7
306	Textural evolution of α-Fe2O3 obtained by thermal and mechanochemical decomposition of δ-FeOOH. Journal of Colloid and Interface Science, 1988, 122, 507-513.	5.0	7

#	Article	IF	CITATIONS
307	Mn, Co oxides prepared by the thermal decomposition of carbonates. Thermochimica Acta, 1988, 133, 257-262.	1.2	7
308	Tk and DTA stkdies of lithikm insertion transition metal compoknds. Materials Chemistry and Physics, 1988, 20, 145-152.	2.0	7
309	Chemical and electrochemical intercalation of lithium into SnTiS3 and BiTi2S5 misfit layer compounds. Solid State Ionics, 1993, 63-65, 450-456.	1.3	7
310	A new tantalum sulfur compound as electrode material for non-aqueous alkali metal batteries. Electrochimica Acta, 1994, 39, 2665-2671.	2.6	7
311	Sodium Intercalation into (PbS)1.18(TiS2)2Misfit Layer Compound. Journal of Solid State Chemistry, 1996, 124, 238-243.	1.4	7
312	Nickel-stabilized composite manganese oxides as lithium insertion electrodes. Journal of Power Sources, 1999, 84, 75-79.	4.0	7
313	Layered solid solutions of LiNi1â^'xCoxO2with α-LiGaO2obtained under high oxygen pressure. Journal of Materials Chemistry, 2004, 14, 366-373.	6.7	7
314	Electrochemical improvement of low-temperature petroleum cokes by chemical oxidation with H2O2 for their use as anodes in lithium ion batteries. Electrochimica Acta, 2006, 52, 1281-1289.	2.6	7
315	Towards an all-solid-state battery: Preparation of conversion anodes by electrodeposition–oxidation processes. Journal of Power Sources, 2013, 244, 403-409.	4.0	7
316	Crystallite size and microstrains of Co3O4 derived from CoOOH and Co(OH)2. Journal of Solid State Chemistry, 1985, 59, 388-392.	1.4	6
317	A procedure for the analysis of gas adsorption measurements. Computers & Chemistry, 1985, 9, 7-9.	1.2	6
318	Influence of crystallinity on the kinetics of the litharge-massicot phase transition. Reactivity of Solids, 1985, 1, 43-55.	0.3	6
319	Effect of crystallinity on the thermal evolution of \hat{I}^3 -Fe2O3. Thermochimica Acta, 1988, 133, 107-112.	1.2	6
320	Relationships between the surface properties of γ-Fe2O3 and its cobalt-modified products. Journal of Colloid and Interface Science, 1990, 138, 565-579.	5.0	6
321	Distribution of Cations and Vacancies in TaFe1.25Te3Studied by Mössbauer Spectroscopy. Journal of Physical Chemistry B, 1998, 102, 8712-8718.	1.2	6
322	57Fe Mössbauer spectroscopy and surface modification with zinc and magnesium of LiCo0.8Fe0.2MnO4 5V electrodes. Journal of Power Sources, 2004, 135, 281-285.	4.0	6
323	On the use of diatomite as antishrinkage additive in the preparation of monolithic carbon aerogels. Carbon, 2016, 98, 280-284.	5.4	6
324	Effect of preliminary grinding on the composition and thermal evolution of lead dioxide. Reactivity of Solids, 1987, 3, 251-261.	0.3	5

#	Article	IF	CITATIONS
325	Limitations in the use of X-ray crystallite size in the determination of surface area in Co3O4. Journal of Colloid and Interface Science, 1987, 115, 274-276.	5.0	5
326	Chromium substitution and crystallinity changes in ?-FeOOH. Journal of Materials Science, 1990, 25, 1813-1815.	1.7	5
327	Cobaltocene intercalation into misfit layer chalcogenides. Journal of the Chemical Society Chemical Communications, 1994, , 1081-1082.	2.0	5
328	Intercalation of n-alkylamines into misfit layer sulfides. Journal of Materials Chemistry, 1996, 6, 861-866.	6.7	5
329	Structural Modifications and Electrochemical Behavior of Lithium-Inserted In16Fe8S32. Journal of Solid State Chemistry, 1998, 138, 193-200.	1.4	5
330	Chemical and Electrochemical Li-Insertion into the Li4Ti5O12 Spinel ChemInform, 2005, 36, no.	0.1	5
331	Effect of oxidative stabilization on the electrochemical performance of carbon mesophases as electrode materials for lithium batteries. Journal of Solid State Electrochemistry, 2005, 9, 627-633.	1.2	5
332	119Sn Mössbauer spectroscopy analysis of Sn–Co–C composites prepared from a Fuel Oil Pyrolysis precursor as anodes for Li-ion batteries. Materials Chemistry and Physics, 2013, 138, 747-754.	2.0	5
333	Influence of Cosurfactant on the Synthesis of Surfaceâ€Modified Na 2/3 Ni 1/3 Mn 2/3 O 2 as a Cathode for Sodiumâ€ion Batteries. ChemElectroChem, 2020, 7, 3528-3534.	1.7	5
334	Sustainable and Environmentally Friendly Na and Mg Aqueous Hybrid Batteries Using Na and K Birnessites. Molecules, 2020, 25, 924.	1.7	5
335	Anode materials for lithium-ion batteries. , 2018, , 43-58.		5
336	Thermal effects induced by grinding in dolomite. Materials Chemistry and Physics, 1984, 10, 225-235.	2.0	4
337	Comments on the paper "iron/manganese oxide catalyst for Fischer-Tropsch synthesis. Part I: structural and textural changes by calcination, reduction and synthesis― Applied Catalysis, 1984, 9, 133-135.	1.1	4
338	Thermal effects induced by imperfections in powdered solids. Thermochimica Acta, 1987, 110, 319-323.	1.2	4
339	Proton exchange of layered LiCrO2. Materials Research Bulletin, 1989, 24, 781-787.	2.7	4
340	Kinetics of the isothermal transformation of \hat{l}^2 -PbO2 into $\hat{l}\pm$ -PbO2. Thermochimica Acta, 1989, 138, 277-283.	1.2	4
341	Structural modifications induced by proton exchange in Î ³ -LiFeO2. Materials Research Bulletin, 1990, 25, 997-1002.	2.7	4
342	Raman study and lattice dynamics calculation of the misfit layer compound (PbS)1.12VS2. Journal of Raman Spectroscopy, 1995, 26, 675-681.	1.2	4

#	Article	IF	CITATIONS
343	Electrochemical lithium insertion in a cation deficient thiospinel Cu3.31GeFe4Sn12S32. Journal of Materials Chemistry, 1998, 8, 1399-1404.	6.7	4
344	Preparation of mixed oxides in the Li-Co-O and Li-Mn-O systems by hydrolysis reactions. Reactivity of Solids, 1989, 7, 263-271.	0.3	3
345	Thermodynamic and kinetic properties of lithium insertion into titanium misfit layer sulfides. Journal of Materials Chemistry, 1994, 4, 1413.	6.7	3
346	A Mössbauer-effect investigation of some electrochemically inserted lithium thiospinels. Nuovo Cimento Della Societa Italiana Di Fisica D - Condensed Matter, Atomic, Molecular and Chemical Physics, Biophysics, 1996, 18, 237-241.	0.4	3
347	Electrochemical lithium and sodium intercalation into TaFe 1.25 Te 3. Journal of Solid State Electrochemistry, 1998, 2, 328-333.	1.2	3
348	Electrochemical proton insertion in Mn2.2Co0.27O4 from aqueous borate solution. Electrochimica Acta, 1999, 45, 931-934.	2.6	3
349	Local Effects of the Electrochemical Reaction of Lithium with Sn ₂ ClPO ₄ and SnHPO ₄ : A Combined ³¹ P, ⁷ Li MAS NMR and ¹¹⁹ Sn Mossbauer Spectroscopy Study. Journal of Physical Chemistry C, 2008, 112, 17436-17442.	1.5	3
350	Improving the Electrochemistry of Anatase for Sodium Ion Batteries by Using Self-Organized TiO2 Nanotubes Prepared by Anodization under Variable Voltage. ECS Transactions, 2014, 62, 45-56.	0.3	3
351	Inorganic solids for dual magnesium and sodium battery electrodes. Journal of Solid State Electrochemistry, 2020, 24, 2565-2573.	1.2	3
352	Texture and microstructure of NiO derived from Ni(OH)2 in vacuum. Surface Technology, 1985, 26, 261-268.	0.4	2
353	Mechanochemical transformation off³-FeOOH intof³-Fe2O3 in the presence of Li2CO3. Journal of Materials Science Letters, 1987, 6, 223-224.	0.5	2
354	Effect of preliminary mechanical activation on the behaviour of orthorhombic lead dioxide. Journal of Thermal Analysis, 1988, 34, 1421-1425.	0.7	2
355	Thermal evolution of the lithiation product of Mn3O4. Thermochimica Acta, 1989, 146, 365-369.	1.2	2
356	Electrochemical alkali metal intercalation into (BiS)1.17(NbS2)2. Solid State Ionics, 1994, 70-71, 439-444.	1.3	2
357	Chemically deintercalated cathode materials for lithium cells. Ionics, 1995, 1, 246-250.	1.2	2
358	Ultrafine layered LiCoO2 obtained from citrate precursors. Ionics, 1997, 3, 1-15.	1.2	2
359	Increasing Cluster Correlations during Electrochemical Insertion Unfolded by the Correlation Correction Factor in the Frame of the Cluster Variation Method. Journal of Physical Chemistry B, 2002, 106, 6942-6946.	1.2	2
360	Changes in the Mechanism of Lithium Extraction by Metal Substitution in High-Voltage Spinel Electrodes. ECS Transactions, 2006, 3, 155-164.	0.3	2

#	Article	IF	CITATIONS
361	A 57Fe Mössbauer spectroscopy study of iron nanoparticles obtained in situ in conversion ferrite electrodes. Hyperfine Interactions, 2008, 183, 1-5.	0.2	2
362	X-ray absorption spectra of the spinel LiCu0.5Mn1.5O4. Journal of Power Sources, 2008, 175, 570-574.	4.0	2
363	Effect of oxidation on the performance of low-temperature petroleum cokes as anodes in lithium ion batteries. Journal of Applied Electrochemistry, 2009, 39, 899-906.	1.5	2
364	Influence of composition modification on Ca0.5â´'xMgxTi2(PO4)3 (0.0â‰ ¤ â‰ 0 .5) nanoparticles as electrodes for lithium batteries. Materials Research Bulletin, 2014, 49, 566-571.	2.7	2
365	A dual vanadium substitution strategy for improving NASICON-type cathode materials for Na-ion batteries. Sustainable Energy and Fuels, 2021, 5, 4095-4103.	2.5	2
366	Effect of grinding on the kinetics of the transformation vaterite-calcite. Thermochimica Acta, 1985, 92, 211-214.	1.2	1
367	TG and DSC studies of lithium insertion in LiFe5O8. Thermochimica Acta, 1988, 133, 203-207.	1.2	1
368	Chemical and electrochemical lithium insertion into ternary transition metal sulfides MMo2S4 (M: V,) Tj ETQq0	0 0 rgBT /(4 : 0	Dverlock 10 T
369	125Te Mössbauer spectroscopic study of layered transition metal ditellurides with interlayer communication. Solid State Communications, 1995, 96, 911-914.	0.9	1
370	Lithium insertion electrodes based on niobium telluride thin films. Electrochimica Acta, 1998, 43, 495-502.	2.6	1
371	Nanodispersed iron, tin and antimony in vapour grown carbon fibres for lithium batteries: an EPR and electrochemical study. Carbon, 2004, 42, 2153-2153.	5.4	1
372	Electrochemical Lithium and Sodium Reactions with Carbon Microspheres Obtained by Polycondensation. ECS Transactions, 2006, 3, 191-198.	0.3	1
373	Modification of the Electrochemical Behavior of Carbon Nanofibers for Lithium-Ion Batteries by Impregnation, and Thermal and Hydrothermal Treatments. ECS Transactions, 2006, 1, 9-16.	0.3	1
374	Irrigation water use monitoring at watershed scale using series of high-resolution satellite images. , 2009, , .		1
375	Preparation and Characterization of Intermetallic Nanoparticles for Lithium Ion Batteries. Journal of Nano Research, 2012, 17, 53-65.	0.8	1
376	Relationships between the length of self-organized titania nanotube, adsorbed solvents and its electrochemical reaction with lithium. Journal of Solid State Electrochemistry, 2015, 19, 3013-3018.	1.2	1
377	In Situ Preparation of Composite Electrodes: Antimony Alloys and Compounds. , 2002, , 193-200.		1
378	Kinetics of the recovery of crystallinity in ground dolomite. Materials Chemistry and Physics, 1985, 13, 477-482.	2.0	0

#	Article	IF	CITATIONS
379	Preparation and sintering behaviour of ultrafine Mn/Fe and Fe/Co mixed oxides. Journal of the European Ceramic Society, 1989, 5, 357-363.	2.8	0
380	Lithium solvation by n-alkylamines in the interlayer space of vanadium diselenide. Solid State Ionics, 1993, 67, 107-113.	1.3	0
381	Kinetic and thermodynamic aspects of lithium intercalation into lead tantalum sulfide and tin tantalum sulfide misfit layer compounds. Solid State Ionics, 1995, 76, 57-65.	1.3	0
382	Chemical delithiation, thermal transformations and electrochemical behaviour of iron- substituted lithium nickelate Materials Research Society Symposia Proceedings, 2000, 658, 971.	0.1	0
383	Key factors controlling the electrochemical performance of the cation-deficient mixed spinel oxide Mn2.2Co0.27O4 as cathode in 3 V rechargeable lithium batteries. Journal of Power Sources, 2001, 94, 122-128.	4.0	0
384	Structural and Electrochemical Study of New LiNi0.5TixMn1.5-xO4 Spinel Oxides for 5-V Cathode Materials ChemInform, 2003, 34, no.	0.1	0
385	Thermal transformations of iron-substituted lithium nickelate studied by in situ X-ray diffraction. Solid State Ionics, 2003, 158, 427-433.	1.3	0
386	"Give Energy to Your Study― Students Worldwide Gather in Europe To Design Future Materials for Energy Storage and Conversion. Journal of Chemical Education, 2011, 88, 1203-1206.	1.1	0
387	Recent advances in nanocrystalline intermetallic tin compounds for the negative electrode of lithium ion batteries. , 2011, , .		0
388	Nanoscale Tin Heterostructures for Improved Energy Storage in Lithium Batteries. ACS Symposium Series, 2013, , 1-22.	0.5	0
389	Computational and Experimental investigation of Nalipoite-Li2APO4 (A = Na, K) electrolytes for Li-ion batteries. Materials Research Society Symposia Proceedings, 2015, 1740, 37.	0.1	0
390	Carbon nanomaterials for advanced lithium and sodium-ion batteries. , 2019, , 335-355.		0
391	Carbon-Based Negative Electrodes of Lithium-Ion Batteries Obtained from Residua of the Petroleum Industry. , 2002, , 101-108.		0
392	On the Use of In-Situ Generated Tin-Based Composite Materials in Lithium-Ion Cells. , 2002, , 201-208.		0
393	Short-Range Co/Mn Ordering and Electrochemical Intercalation of Li into Li[Mn2-yCoy]O4 SPINELS, O <yâ‰⊈. ,="" 2002,="" 475-482.<="" td=""><td></td><td>0</td></yâ‰⊈.>		0
394	Nanostructured TiO2 Materials for New-Generation Li-Ion Batteries. , 2011, , 183-236.		0
395	Unfolding the role of iron in Li-ion conversion electrode materials by 57Fe Mössbauer spectroscopy. , 2013, , 489-495.		0
396	Nanostructured TiO2 Materials for New-Generation Li-Ion Batteries. , 2017, , 171-221.		0