
Jeong Hwan Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6374475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Novel Heteroleptic Tin(II) Complexes Capable of Forming SnO and SnO ₂ Thin Films Depending on Conditions Using Chemical Solution Deposition. ACS Omega, 2022, 7, 1232-1243.	3.5	6
2	Atomic Layer Deposition of Cu ₂ SnS ₃ Thin Films: Effects of Composition and Heat Treatment on Phase Transformation. Chemistry of Materials, 2021, 33, 8112-8123.	6.7	6
3	Polycrystalline and high purity SnO2 films by plasma-enhanced atomic layer deposition using H2O plasma at very low temperatures of 60–90°C. Vacuum, 2021, , 110739.	3.5	1
4	Wafer-Scale, Conformal, and Low-Temperature Synthesis of Layered Tin Disulfides for Emerging Nonplanar and Flexible Electronics. ACS Applied Materials & Interfaces, 2020, 12, 2679-2686.	8.0	20
5	Investigation of phases and chemical states of tin titanate films grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 012404.	2.1	3
6	Highly sensitive flexible NO ₂ sensor composed of vertically aligned 2D SnS ₂ operating at room temperature. Journal of Materials Chemistry C, 2020, 8, 11874-11881.	5.5	38
7	Effect of Oxygen Source on the Various Properties of SnO2 Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition. Coatings, 2020, 10, 692.	2.6	16
8	Cation-Regulated Transformation for Continuous Two-Dimensional Tin Monosulfide. Chemistry of Materials, 2020, 32, 2313-2320.	6.7	21
9	Highly efficient photocatalytic methylene blue degradation over Sn(O,S)/TiO2 photocatalyst fabricated via powder atomic layer deposition of SnO and subsequent sulfurization. Materials Letters, 2020, 272, 127868.	2.6	4
10	Effect of Ag Concentration Dispersed in HfOx Thin Films on Threshold Switching. Nanoscale Research Letters, 2020, 15, 27.	5.7	15
11	Reduction of the Hysteresis Voltage in Atomic‣ayerâ€Deposited pâ€Type SnO Thinâ€Film Transistors by Adopting an Al ₂ O ₃ Interfacial Layer. Advanced Electronic Materials, 2019, 5, 1900371.	5.1	23
12	High-Performance Thin-Film Transistors of Quaternary Indium–Zinc–Tin Oxide Films Grown by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2019, 11, 14892-14901.	8.0	48
13	SnO-decorated TiO2 nanoparticle with enhanced photocatalytic performance for methylene blue degradation. Applied Surface Science, 2019, 480, 1089-1092.	6.1	14
14	Phase-controlled SnO2 and SnO growth by atomic layer deposition using Bis(N-ethoxy-2,2-dimethyl) Tj ETQq0 0	OrgBT ∕Ov	erlock 10 Tf 42
	Band gap engineering of atomic layer deposited Zn _x Sn _{1â€x} O buffer for efficient		

15	Cu(In,Ga)Se ₂ solar cell. Progress in Photovoltaics: Research and Applications, 2018, 26, 745-751.	8.1	13
16	Manipulating superconducting phases via current-driven magnetic states in rare-earth-doped CaFe2As2. NPG Asia Materials, 2018, 10, 156-162.	7.9	2
17	Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S. Applied Surface Science, 2018, 456, 501-506.	6.1	11
18	Indium complexes bearing donor-functionalized alkoxide ligands as precursors for indium oxide thin films. Journal of Organometallic Chemistry, 2017, 833, 43-49.	1.8	7

JEONG HWAN HAN

#	Article	IF	CITATIONS
19	Germanium Compounds Containing Geâ+E Double Bonds (E = S, Se, Te) as Single-Source Precursors for Germanium Chalcogenide Materials. Inorganic Chemistry, 2017, 56, 4084-4092.	4.0	19
20	Fourâ€Bitsâ€Perâ€Cell Operation in an HfO ₂ â€Based Resistive Switching Device. Small, 2017, 13, 1701781.	10.0	37
21	New Heteroleptic Cobalt Precursors for Deposition of Cobalt-Based Thin Films. ACS Omega, 2017, 2, 5486-5493.	3.5	7
22	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. Chemistry of Materials, 2017, 29, 8100-8110.	6.7	68
23	Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(<i>N</i> -ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application. ACS Applied Materials & Interfaces, 2016, 8, 26924-26931.	8.0	59
24	Trinuclear magnesium complexes stabilized by aminoalkoxide ligands. Journal of Coordination Chemistry, 2016, 69, 2591-2597.	2.2	0
25	N-Alkoxy Carboxamide Stabilized Tin(II) and Germanium(II) Complexes for Thin-Film Applications. European Journal of Inorganic Chemistry, 2016, 2016, 5539-5546.	2.0	18
26	Synthesis of Monoâ€Imido Tungsten Complexes Directly from WCl ₆ . ChemistrySelect, 2016, 1, 44-48.	1.5	4
27	Synthesis of novel tin complexes using functionalized oxime ligands. Inorganica Chimica Acta, 2016, 446, 1-5.	2.4	3
28	Growth of p-Type Tin(II) Monoxide Thin Films by Atomic Layer Deposition from Bis(1-dimethylamino-2-methyl-2propoxy)tin and H ₂ O. Chemistry of Materials, 2014, 26, 6088-6091.	6.7	76
29	SnO 2 thin films grown by atomic layer deposition using a novel Sn precursor. Applied Surface Science, 2014, 320, 188-194.	6.1	35
30	Controlling the initial growth behavior of SrTiO3 films by interposing Al2O3 layers between the film and the Ru substrate. Journal of Materials Chemistry, 2012, 22, 15037.	6.7	19