
Jeong Hwan Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6374475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Growth of p-Type Tin(II) Monoxide Thin Films by Atomic Layer Deposition from Bis(1-dimethylamino-2-methyl-2propoxy)tin and H ₂ O. Chemistry of Materials, 2014, 26, 6088-6091.	6.7	76
2	Synthesis of SnS Thin Films by Atomic Layer Deposition at Low Temperatures. Chemistry of Materials, 2017, 29, 8100-8110.	6.7	68
3	Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(<i>N</i> -ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application. ACS Applied Materials & Interfaces, 2016, 8, 26924-26931.	8.0	59
4	High-Performance Thin-Film Transistors of Quaternary Indium–Zinc–Tin Oxide Films Grown by Atomic Layer Deposition. ACS Applied Materials & Interfaces, 2019, 11, 14892-14901.	8.0	48
5	Phase-controlled SnO2 and SnO growth by atomic layer deposition using Bis(N-ethoxy-2,2-dimethyl) Tj ETQq1 1 (0.784314 4.8	rgBT /Overic
6	Highly sensitive flexible NO ₂ sensor composed of vertically aligned 2D SnS ₂ operating at room temperature. Journal of Materials Chemistry C, 2020, 8, 11874-11881.	5.5	38
7	Fourâ€Bitsâ€Perâ€Cell Operation in an HfO ₂ â€Based Resistive Switching Device. Small, 2017, 13, 1701781.	10.0	37
8	SnO 2 thin films grown by atomic layer deposition using a novel Sn precursor. Applied Surface Science, 2014, 320, 188-194.	6.1	35
9	Reduction of the Hysteresis Voltage in Atomicâ€Layerâ€Deposited pâ€Type SnO Thinâ€Film Transistors by Adopting an Al ₂ O ₃ Interfacial Layer. Advanced Electronic Materials, 2019, 5, 1900371.	5.1	23
10	Cation-Regulated Transformation for Continuous Two-Dimensional Tin Monosulfide. Chemistry of Materials, 2020, 32, 2313-2320.	6.7	21
11	Wafer-Scale, Conformal, and Low-Temperature Synthesis of Layered Tin Disulfides for Emerging Nonplanar and Flexible Electronics. ACS Applied Materials & Interfaces, 2020, 12, 2679-2686.	8.0	20
12	Controlling the initial growth behavior of SrTiO3 films by interposing Al2O3 layers between the film and the Ru substrate. Journal of Materials Chemistry, 2012, 22, 15037.	6.7	19
13	Germanium Compounds Containing Geâ•E Double Bonds (E = S, Se, Te) as Single-Source Precursors for Germanium Chalcogenide Materials. Inorganic Chemistry, 2017, 56, 4084-4092.	4.0	19
14	N-Alkoxy Carboxamide Stabilized Tin(II) and Germanium(II) Complexes for Thin-Film Applications. European Journal of Inorganic Chemistry, 2016, 2016, 5539-5546.	2.0	18
15	Effect of Oxygen Source on the Various Properties of SnO2 Thin Films Deposited by Plasma-Enhanced Atomic Layer Deposition. Coatings, 2020, 10, 692.	2.6	16
16	Effect of Ag Concentration Dispersed in HfOx Thin Films on Threshold Switching. Nanoscale Research Letters, 2020, 15, 27.	5.7	15
17	SnO-decorated TiO2 nanoparticle with enhanced photocatalytic performance for methylene blue degradation. Applied Surface Science, 2019, 480, 1089-1092.	6.1	14
18	Band gap engineering of atomic layer deposited Zn _x Sn _{1â€x} O buffer for efficient Cu(In,Ga)Se ₂ solar cell. Progress in Photovoltaics: Research and Applications, 2018, 26, 745-751.	8.1	13

JEONG HWAN HAN

#	Article	IF	CITATIONS
19	Growth of Cu2S thin films by atomic layer deposition using Cu(dmamb)2 and H2S. Applied Surface Science, 2018, 456, 501-506.	6.1	11
20	Indium complexes bearing donor-functionalized alkoxide ligands as precursors for indium oxide thin films. Journal of Organometallic Chemistry, 2017, 833, 43-49.	1.8	7
21	New Heteroleptic Cobalt Precursors for Deposition of Cobalt-Based Thin Films. ACS Omega, 2017, 2, 5486-5493.	3.5	7
22	Atomic Layer Deposition of Cu ₂ SnS ₃ Thin Films: Effects of Composition and Heat Treatment on Phase Transformation. Chemistry of Materials, 2021, 33, 8112-8123.	6.7	6
23	Novel Heteroleptic Tin(II) Complexes Capable of Forming SnO and SnO ₂ Thin Films Depending on Conditions Using Chemical Solution Deposition. ACS Omega, 2022, 7, 1232-1243.	3.5	6
24	Synthesis of Monoâ€Imido Tungsten Complexes Directly from WCl ₆ . ChemistrySelect, 2016, 1, 44-48.	1.5	4
25	Highly efficient photocatalytic methylene blue degradation over Sn(O,S)/TiO2 photocatalyst fabricated via powder atomic layer deposition of SnO and subsequent sulfurization. Materials Letters, 2020, 272, 127868.	2.6	4
26	Synthesis of novel tin complexes using functionalized oxime ligands. Inorganica Chimica Acta, 2016, 446, 1-5.	2.4	3
27	Investigation of phases and chemical states of tin titanate films grown by atomic layer deposition. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, 012404.	2.1	3
28	Manipulating superconducting phases via current-driven magnetic states in rare-earth-doped CaFe2As2. NPG Asia Materials, 2018, 10, 156-162.	7.9	2
29	Polycrystalline and high purity SnO2 films by plasma-enhanced atomic layer deposition using H2O plasma at very low temperatures of 60–90À°C. Vacuum, 2021, , 110739.	3.5	1
30	Trinuclear magnesium complexes stabilized by aminoalkoxide ligands. Journal of Coordination Chemistry, 2016, 69, 2591-2597.	2.2	0