Paul F Schuster

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6374081/publications.pdf Version: 2024-02-01

DALLE F SCHLISTED

#	Article	IF	CITATIONS
1	Atmospheric Mercury Deposition during the Last 270 Years:Â A Glacial Ice Core Record of Natural and Anthropogenic Sources. Environmental Science & Technology, 2002, 36, 2303-2310.	10.0	406
2	Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 2018, 45, 1463-1471.	4.0	245
3	Oxygen-18 concentrations in recent precipitation and ice cores on the Tibetan Plateau. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	230
4	Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers. Nature Geoscience, 2012, 5, 198-201.	12.9	199
5	Controls on nitrogen flux in alpine/subalpine watersheds of Colorado. Water Resources Research, 2000, 36, 37-47.	4.2	113
6	Mercury Export from the Yukon River Basin and Potential Response to a Changing Climate. Environmental Science & Technology, 2011, 45, 9262-9267.	10.0	110
7	Mercury and Organic Carbon Dynamics During Runoff Episodes from a Northeastern USA Watershed. Water, Air, and Soil Pollution, 2007, 187, 89-108.	2.4	107
8	Carbon budget for a groundwater-fed lake: Calcification supports summer photosynthesis. Limnology and Oceanography, 1994, 39, 1319-1332.	3.1	104
9	Multidecadal increases in the Yukon River Basin of chemical fluxes as indicators of changing flowpaths, groundwater, and permafrost. Geophysical Research Letters, 2016, 43, 12,120.	4.0	99
10	Comparison of total mercury and methylmercury cycling at five sites using the small watershed approach. Environmental Pollution, 2008, 154, 143-154.	7.5	96
11	Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. Science of the Total Environment, 2020, 721, 137647.	8.0	91
12	Hydrological and chemical estimates of the water balance of a closed-basin lake in north central Minnesota. Water Resources Research, 1997, 33, 2799-2812.	4.2	80
13	Potential impacts of mercury released from thawing permafrost. Nature Communications, 2020, 11, 4650.	12.8	77
14	Influences of glacier melt and permafrost thaw on the age of dissolved organic carbon in the Yukon River basin. Global Biogeochemical Cycles, 2014, 28, 525-537.	4.9	70
15	Mercury on the move during snowmelt in Vermont. Eos, 2002, 83, 45-48.	0.1	62
16	Runoff sources and flow paths in a partially burned, upland boreal catchment underlain by permafrost. Water Resources Research, 2014, 50, 8141-8158.	4.2	54
17	Increasing aeolian dust deposition to snowpacks in the Rocky Mountains inferred from snowpack, wet deposition, and aerosol chemistry. Atmospheric Environment, 2016, 146, 183-194.	4.1	50
18	Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times. Hydrological Processes, 2006, 20, 1753-1772.	2.6	45

PAUL F SCHUSTER

#	Article	IF	CITATIONS
19	Characterization of lake water and ground water movement in the littoral zone of Williams Lake, a closed-basin lake in north central Minnesota. Hydrological Processes, 2003, 17, 823-838.	2.6	42
20	Control of seasonal water vapor isotope variations at Lhasa, southern Tibetan Plateau. Journal of Hydrology, 2020, 580, 124237.	5.4	40
21	Ice core evidence of rapid air temperature increases since 1960 in alpine areas of the Wind River Range, Wyoming, United States. Journal of Geophysical Research, 2002, 107, ACL 3-1.	3.3	38
22	Little Ice Age Evidence from a South-Central North American Ice Core, U.S.A Arctic and Alpine Research, 1996, 28, 35.	1.3	37
23	Chronological refinement of an ice core record at Upper Fremont Glacier in south central North America. Journal of Geophysical Research, 2000, 105, 4657-4666.	3.3	37
24	Permafrost degradation enhances the risk of mercury release on Qinghai-Tibetan Plateau. Science of the Total Environment, 2020, 708, 135127.	8.0	35
25	Changing times, changing stories: generational differences in climate change perspectives from four remote indigenous communities in Subarctic Alaska. Ecology and Society, 2016, 21, .	2.3	31
26	Data Quality from a Community-Based, Water-Quality Monitoring Project in the Yukon River Basin. Citizen Science: Theory and Practice, 2018, 3, 1.	1.2	31
27	Indigenous Observations of Climate Change in the Lower Yukon River Basin, Alaska. Human Organization, 2011, 70, 244-252.	0.3	30
28	A 50-year record of NOx and SO2 sources in precipitation in the Northern Rocky Mountains, USA. Geochemical Transactions, 2011, 12, 4.	0.7	14
29	Vulnerability of Subsistence Systems Due to Social and Environmental Change: A Case Study in the Yukon-Kuskokwim Delta, Alaska. Arctic, 2019, 72, 258-272.	0.4	14
30	Assessment of Spatial Variability of Major-Ion Concentrations and DEL Oxygen-18 Values in Surface Snow, Upper Fremont Glacier, Wyoming, U.S.A Hydrology Research, 1994, 25, 371-388.	2.7	9
31	Carbon and geochemical properties of cryosols on the North Slope of Alaska. Cold Regions Science and Technology, 2014, 100, 59-67.	3.5	7
32	Peat porewater chloride concentration profiles in the Everglades during wet/dry cycles from January 1996 to June 1998: field measurements and theoretical analysis. Hydrological Processes, 2008, 22, 1713-1724.	2.6	5
33	Trace elements and common ions in southeastern Idaho snow: regional air pollutant tracers for source area emissions. Fuel Processing Technology, 2004, 85, 657-671.	7.2	4
34	Variations Between δ180 in Recently Deposited Snow and on-Site Air Temperature, Upper Fremont Glacier, Wyoming. , 2004, , 217-234.		3
35	Reply to comment on â€~Characterization of surface and ground water Î′18O seasonal variation and its use for estimating groundwater residence times' by R. E. Criss and W. E. Winston. Hydrological Processes, 2006, 20, 3573-3578.	2.6	0
36	Evidence of Abrupt Climate Change and the Development of an Historic Mercury Deposition Record Using Chronological Refinement of Ice Cores at Upper Fremont Glacier. , 2004, , 181-216.		0