Marianne Schultzberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6374067/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Peptidergic neurones. Nature, 1980, 284, 515-521.	27.8	1,682
2	Enkephalinâ€like immunoreactivity in nerve terminals in sympathetic ganglia and adrenal medulla and in adrenal medullary gland cells. Acta Physiologica Scandinavica, 1978, 103, 475-477.	2.2	209
3	Resolution of inflammation is altered in Alzheimer's disease. Alzheimer's and Dementia, 2015, 11, 40.	0.8	208
4	Cytokine Regulation of Neuronal Survival. Journal of Neurochemistry, 1992, 58, 454-460.	3.9	204
5	Neuropeptide Y-, tyrosine hydroxylase- and vasoactive intestinal polypeptide-immunoreactive nerves in bone and surrounding tissues. Journal of the Autonomic Nervous System, 1988, 25, 119-125.	1.9	203
6	Blood-brain barrier alterations in ageing and dementia. Journal of the Neurological Sciences, 2009, 283, 99-106.	0.6	197
7	VIP-, enkephalin-, substance P- and somatostatin-like immunoreactivity in neurons intrinsic to the intestine: immunohistochemical evidence from organotypic tissue cultures. Brain Research, 1978, 155, 239-248.	2.2	194
8	Omega-3 Fatty Acids Enhance Phagocytosis of Alzheimer's Disease-Related Amyloid-β42 by Human Microglia and Decrease Inflammatory Markers. Journal of Alzheimer's Disease, 2013, 35, 697-713.	2.6	190
9	Chapter 4 Coexistence of neuronal messengers — an overview. Progress in Brain Research, 1986, 68, 33-70.	1.4	180
10	Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 Phagocytosis. Molecular Neurobiology, 2016, 53, 2733-2749.	4.0	152
11	Neuroendocrine regulation of cyclic AMP formation in osteoblastic cell lines (UMR-106–01, ROS 17/2.8,) Tj ET	Qq110.7	84314 rgBT
12	Detoxication enzyme inducers modify cytokine production in rat mixed glial cells. Journal of Neuroimmunology, 2005, 166, 132-143.	2.3	116
13	Immunohistochemical evidence for a local VIPâ€ergic neuron system in the adrenal gland of the rat. Acta Physiologica Scandinavica, 1981, 113, 575-576.	2.2	111
14	Capsaicin depletes CCK-like immunoreactivity detected by immunohistochemistry, but not that measured by radioimmunoassay in rat dorsal spinal cord. Brain Research, 1982, 235, 198-204.	2.2	107
15	Interleukinâ€I System in CNS Stress. Annals of the New York Academy of Sciences, 2007, 1113, 173-177.	3.8	105
16	Cytokines in neuronal cell types. Neurochemistry International, 1993, 22, 435-444.	3.8	103
17	Increased levels of substance p and calcitonin gene-related peptide in rat adjuvant arthritis: combined immunohistochemical and radioimmunoassay analysis. Arthritis and Rheumatism, 1995, 38, 699-709.	6.7	89
18	EXPRESSION OF INTERLEUKIN 1α AND β, AND INTERLEUKIN 1 RECEPTOR ANTAGONIST mRNA IN THE RAT CENT NERVOUS SYSTEM AFTER PERIPHERAL ADMINISTRATION OF LIPOPOLYSACCHARIDES. Cytokine, 2000, 12, 423-431.	RAL 3.2	88

#	Article	IF	CITATIONS
19	Cellular localization of somatostatin. Metabolism: Clinical and Experimental, 1978, 27, 1151-1159.	3.4	87
20	Effects of Omega-3 Fatty Acids on Inflammatory Markers in Cerebrospinal Fluid and Plasma in Alzheimer's Disease: The OmegAD Study. Dementia and Geriatric Cognitive Disorders, 2009, 27, 481-490.	1.5	82
21	Plasma Fatty Acid Profiles in Relation toÂCognition and Gender in Alzheimer's Disease Patients During Oral Omega-3 FattyÂAcid Supplementation: The OmegADÂStudy. Journal of Alzheimer's Disease, 2015, 48, 805-812.	2.6	82
22	Expression of tyrosine hydroxylase in cerebellar Purkinje neurons of the mutant tottering and leaner mouse. Molecular Brain Research, 1992, 15, 227-240.	2.3	79
23	Soluble interleukin-1 receptor type II levels are elevated in cerebrospinal fluid in Alzheimer's disease patients. Brain Research, 1999, 826, 112-116.	2.2	78
24	Activityâ€Regulated Cytoskeletonâ€Associated Protein in Rodent Brain is Downâ€Regulated by High Fat Diet <i>in vivo</i> and by 27â€Hydroxycholesterol <i>in vitro</i> . Brain Pathology, 2009, 19, 69-80.	4.1	78
25	Nerve fibre studies in skin biopsies in peripheral neuropathies. I. Immunohistochemical analysis of neuropeptides in diabetes mellitus. Journal of the Neurological Sciences, 1989, 93, 289-296.	0.6	73
26	Detrimental effects of a high fat/high cholesterol diet on memory and hippocampal markers in aged rats. Behavioural Brain Research, 2016, 312, 294-304.	2.2	70
27	β-Amyloid Protein Structure Determines the Nature of Cytokine Release From Rat Microglia. Journal of Molecular Neuroscience, 2005, 27, 001-012.	2.3	68
28	Increased expression of mRNA encoding interleukin-1? and caspase-1, and the secreted isoform of interleukin-1 receptor antagonist in the rat brain following systemic kainic acid administration. Journal of Neuroscience Research, 2000, 60, 266-279.	2.9	67
29	α-Melanocyte-stimulating hormone is neuroprotective in rat global cerebral ischemia. Neuropeptides, 2006, 40, 65-75.	2.2	64
30	Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: the OmegAD study. Journal of Lipid Research, 2015, 56, 674-681.	4.2	63
31	High cholesterol diet induces tau hyperphosphorylation in apolipoprotein E deficient mice. FEBS Letters, 2005, 579, 6411-6416.	2.8	62
32	Effects of Supplementation with Omega-3 Fatty Acids on Oxidative Stress and Inflammation in Patients with Alzheimer's Disease: The OmegAD Study. Journal of Alzheimer's Disease, 2014, 42, 823-831.	2.6	61
33	Effects of Peripheral Administration of LPS on the Expression of Immunoreactive Interleukin-1α, β, and Receptor Antagonist in Rat Brain. Annals of the New York Academy of Sciences, 1998, 840, 128-138.	3.8	57
34	Capsaicin effects on substance P and CGRP in rat adjuvant arthritis. Regulatory Peptides, 1995, 55, 85-102.	1.9	56
35	Impaired long term memory consolidation in transgenic mice overexpressing the human soluble form of IL-1ra in the brain. Journal of Neuroimmunology, 2009, 208, 46-53.	2.3	55
36	Analysis of Matrix Metallo-Proteases and the Plasminogen System in Mild Cognitive Impairment and Alzheimer's Disease Cerebrospinal Fluid. Journal of Alzheimer's Disease, 2014, 40, 667-678.	2.6	55

MARIANNE SCHULTZBERG

#	Article	IF	CITATIONS
37	Inflammation in the nervous system — Physiological and pathophysiological aspects. Physiology and Behavior, 2007, 92, 121-128.	2.1	54
38	Kainic acid induced expression of interleukin-1 receptor antagonist mRNA in the rat brain. Molecular Brain Research, 1998, 58, 195-208.	2.3	51
39	Blunted neurogenesis and gliosis due to transgenic overexpression of human soluble ILâ€1ra in the mouse. European Journal of Neuroscience, 2008, 27, 549-558.	2.6	50
40	Soluble interleukin-1 receptor type II, IL-18 and caspase-1 in mild cognitive impairment and severe Alzheimer's disease. Neurochemistry International, 2005, 46, 551-557.	3.8	49
41	DHA-rich n–3 fatty acid supplementation decreases DNA methylation in blood leukocytes: the OmegAD study. American Journal of Clinical Nutrition, 2017, 106, 1157-1165.	4.7	46
42	COEXISTENCE OF CLASSICAL TRANSMITTERS AND PEPTIDES IN THE CENTRAL AND PERIPHERAL NERVOUS SYSTEMS. British Medical Bulletin, 1982, 38, 309-314.	6.9	45
43	Effects of statins on microglia. Journal of Neuroscience Research, 2005, 82, 10-19.	2.9	45
44	Neuropsychiatric symptoms in dementia—A role for neuroinflammation?. Brain Research Bulletin, 2014, 108, 88-93.	3.0	44
45	Reduced prostaglandin F2α release from blood mononuclear leukocytes after oral supplementation of ï‰3 fatty acids: the OmegAD study. Journal of Lipid Research, 2010, 51, 1179-1185.	4.2	43
46	Expression and Distribution of Tartrate-resistant Purple Acid Phosphatase in the Rat Nervous System. Journal of Histochemistry and Cytochemistry, 2001, 49, 379-396.	2.5	42
47	Can inflammation be resolved in Alzheimer's disease?. Therapeutic Advances in Neurological Disorders, 2018, 11, 175628641879110.	3.5	42
48	Early induction of interleukin-6 mRNA in the hippocampus and cortex of APPsw transgenic mice Tg2576. Neuroscience Letters, 2001, 301, 54-58.	2.1	41
49	Cytokine production by a human microglial cell line: Effects of ßamyloid and α-melanocyte-stimulating hormone. Neurotoxicity Research, 2005, 8, 267-276.	2.7	41
50	Receptors for proâ€resolving mediators are increased in Alzheimer's disease brain. Brain Pathology, 2020, 30, 614-640.	4.1	41
51	Interplay between human microglia and neural stem/progenitor cells in an allogeneic coâ€culture model. Journal of Cellular and Molecular Medicine, 2013, 17, 1434-1443.	3.6	39
52	Partial purification and characterization of a muscarinic acetylcholine receptor from rat cerebral cortex. Biochemical and Biophysical Research Communications, 1974, 59, 725-733.	2.1	38
53	α-MSH Rescues Neurons from Excitotoxic Cell Death. Journal of Molecular Neuroscience, 2007, 33, 239-251.	2.3	37
54	Differential Regulation of Resolution in Inflammation induced by Amyloid-β42 and Lipopolysaccharides in Human Microglia. Journal of Alzheimer's Disease, 2014, 43, 1237-1250.	2.6	37

#	Article	IF	CITATIONS
55	Provocation With Stress and Electricity of Patients With ???Sensitivity to Electricity???. Journal of Occupational and Environmental Medicine, 2000, 42, 512-516.	1.7	35
56	NMDA-Receptor Antagonist Prevents Measles Virus-induced Neurodegeneration. European Journal of Neuroscience, 1991, 3, 66-71.	2.6	34
57	Regionally specific induction of ICE mRNA and enzyme activity in the rat brain and adrenal gland by LPS. Brain Research, 1996, 712, 153-158.	2.2	32
58	Connection between inflammatory processes and transmittor function—Modulatory effects of interleukin-1. Progress in Neurobiology, 2010, 90, 256-262.	5.7	32
59	Inhibition of kainic acid induced expression of interleukin-1β and interleukin-1 receptor antagonist mRNA in the rat brain by NMDA receptor antagonists. Molecular Brain Research, 2000, 85, 103-113.	2.3	31
60	Allergy influences the inflammatory status of the brain and enhances tauâ€phosphorylation. Journal of Cellular and Molecular Medicine, 2012, 16, 2401-2412.	3.6	31
61	Distribution of Substance P in Brain and Periphery and its Possible Role as a Coâ€Transmitter. Novartis Foundation Symposium, 1982, , 84-106.	1.1	30
62	The mismatch problem in receptor autoradiography and the coexistence of multiple messengers. Trends in Neurosciences, 1986, 9, 109-110.	8.6	28
63	Transgenic overexpression of interleukin-1 receptor antagonist in the CNS influences behaviour, serum corticosterone and brain monoamines. Brain, Behavior, and Immunity, 2005, 19, 223-234.	4.1	28
64	Age-related changes in brain phospholipids and bioactive lipids in the APP knock-in mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2021, 9, 116.	5.2	28
65	Differential ontogeny of three putative catecholamine cell types in the postnatal rat retina. Developmental Brain Research, 1985, 22, 187-196.	1.7	27
66	Acute-phase responses in transgenic mice with CNS overexpression of IL-1 receptor antagonist. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 276, R644-R651.	1.8	27
67	Distribution of neuropeptide Y receptors in the rat hippocampal region. Neuroscience Letters, 1987, 75, 141-146.	2.1	26
68	Induction of Interleukin-1β mRNA and Enkephalin mRNA in the Rat Adrenal Gland by Lipopolysaccharides Studied by in situ Hybridization Histochemistry (Part 1 of 2). NeuroImmunoModulation, 1995, 2, 61-67.	1.8	25
69	Intranasal delivery of pro-resolving lipid mediators rescues memory and gamma oscillation impairment in AppNL-G-F/NL-G-F mice. Communications Biology, 2022, 5, 245.	4.4	25
70	RvE1 treatment prevents memory loss and neuroinflammation in the Ts65Dn mouse model of Down syndrome. Glia, 2020, 68, 1347-1360.	4.9	24
71	Interleukin-1 Receptor Antagonist Protein and mRNA in the Rat Adrenal Gland. Journal of Interferon and Cytokine Research, 1995, 15, 721-729.	1.2	22
72	Cytokines and memory across the mature life span of women. Scandinavian Journal of Psychology, 2011, 52, 229-235.	1.5	22

#	Article	IF	CITATIONS
73	Proinflammatory cytokines and their corresponding receptor proteins in eccrine sweat glands in normal and cutaneous leishmaniasis human skin. An immunohistochemical study. Experimental Dermatology, 1996, 5, 230-235.	2.9	21
74	Chapter 2 Genetically altered and defined cell lines for transplantation in animal models of Parkinson's disease. Progress in Brain Research, 1990, 82, 11-21.	1.4	20
75	Effects of surgical denervation on substance P and calcitonin gene-related peptide in adjuvant arthritis. Peptides, 1995, 16, 569-579.	2.4	20
76	Interleukin-1 in the Noradrenergic Chromaffin Cells in the Rat Adrenal Medulla. Annals of the New York Academy of Sciences, 1990, 594, 207-213.	3.8	19
77	Chronic airway-induced allergy in mice modifies gene expression in the brain toward insulin resistance and inflammatory responses. Journal of Neuroinflammation, 2013, 10, 99.	7.2	19
78	Insufficient Resolution Response in the Hippocampus of a Senescence-Accelerated Mouse Model — SAMP8. Journal of Molecular Neuroscience, 2015, 55, 396-405.	2.3	19
79	Cerebrospinal Fluid Profile of Lipid Mediators in Alzheimer's Disease. Cellular and Molecular Neurobiology, 2023, 43, 797-811.	3.3	19
80	The influence of kainic acid on core temperature and cytokine levels in the brain. Cytokine, 2006, 35, 77-87.	3.2	18
81	Effects of Immunomodulatory Substances on Phagocytosis of A by Human Microglia. International Journal of Alzheimer's Disease, 2010, 2010, 1-18.	2.0	17
82	Interleukin (IL)-1α- and -1β-, IL-6-, and Tumor Necrosis Factor-α-like Immunoreactivities in Human Common and Dysplastic Nevocellular Nevi and Malignant Melanoma. American Journal of Dermatopathology, 1995, 17, 222-229.	0.6	16
83	Maresin 1 attenuates proâ€inflammatory activation induced by βâ€amyloid and stimulates its uptake. Journal of Cellular and Molecular Medicine, 2021, 25, 434-447.	3.6	16
84	Effects of chronic overexpression of interleukin-1 receptor antagonist in a model of permanent focal cerebral ischemia in mouse. Acta Neuropathologica, 2004, 108, 69-80.	7.7	15
85	Role of polyunsaturated fatty acids in ischemic stroke – A perspective of specialized pro-resolving mediators. Clinical Nutrition, 2021, 40, 2974-2987.	5.0	15
86	Substance P-like immunoreactivity in cultured spinal ganglia from chick embryos. Journal of Neurocytology, 1978, 7, 107-117.	1.5	14
87	??-MSH decreases core and brain temperature during global cerebral ischemia in rats. NeuroReport, 2005, 16, 69-72.	1.2	14
88	Ephemeral existence of a single catecholamine synthetic enzyme in the olfactory placode and the spinal cord of the embryonic rat. International Journal of Developmental Neuroscience, 1985, 3, 597-608.	1.6	13
89	Immunohistochemical and behaviour pharmacological analysis of rats inoculated intranasally with vesicular stomatitis virus. Journal of Chemical Neuroanatomy, 1993, 6, 7-18.	2.1	13
90	Neuronal expression of caspase-1 immunoreactivity in the rat central nervous system. Journal of Neuroimmunology, 2004, 146, 99-113.	2.3	12

MARIANNE SCHULTZBERG

#	Article	IF	CITATIONS
91	Expression of presenilin 1 mRNA in rat peripheral organs and brain. The Histochemical Journal, 1999, 31, 515-523.	0.6	10
92	Morphological and behavioral changes induced by transgenic overexpression of interleukinâ€1ra in the brain. Journal of Neuroscience Research, 2011, 89, 142-152.	2.9	10
93	Reduced Levels of Plasma Lipoxin A4 Are Associated with Post-Stroke Cognitive Impairment. Journal of Alzheimer's Disease, 2021, 79, 607-613.	2.6	10
94	Effects of Peroral Omega-3 Fatty Acid Supplementation on Cerebrospinal Fluid Biomarkers in Patients with Alzheimer's Disease: A Randomized Controlled Trial—The OmegAD Study. Journal of Alzheimer's Disease, 2021, 83, 1291-1301.	2.6	10
95	Influence of Allergy on Immunoglobulins and Amyloid-β in the Cerebrospinal Fluid of Patients with Alzheimer's Disease. Journal of Alzheimer's Disease, 2015, 48, 495-505.	2.6	9
96	Dopamine- and adenosine-3′,5′-monophosphate (cAMP)-regulated phosphoprotein of 32 kDa (DARRP-32) in the adrenal gland: immunohistochemical localization. Journal of the Autonomic Nervous System, 1991, 36, 75-84.	1.9	7
97	Increased sensitivity to N-methyl-d-aspartate receptor-induced excitotoxicity in cerebellar granule cells from interleukin-1 receptor type I-deficient mice. Journal of Neuroimmunology, 2002, 133, 108-115.	2.3	7
98	Cerebrospinal Fluid Inflammatory Markers in Alzheimer's Disease: Influence of Comorbidities. Current Alzheimer Research, 2021, 18, 157-170.	1.4	3
99	Location of interleukin-1 in the nervous system. , 1992, , 1-11.		2
100	Peptidergic innervation of the internal anal sphincter in Hirschsprung's disease. Pediatric Surgery International, 1996, 11, 33-40.	1.4	1
101	Neurokinin A in rat adjuvant arthritis. Effect of capsaicin treatment. NeuroReport, 1999, 10, 3307-3313.	1.2	1
102	Chemical signaling in the nervous system in health and disease: Nils-Ã…ke Hillarp's legacy. Progress in Neurobiology, 2010, 90, 71-74.	5.7	0
103	Inflammation and its resolution – studies in Alzheimer's disease. Neurobiology of Aging, 2016, 39, S17	3.1	0
104	Chronic Airway Allergy Induces Pro-Inflammatory Responses in the Brain of Wildtype Mice but Not 3xTgAD Mice. Neuroscience, 2020, 448, 14-27.	2.3	0