

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372942/publications.pdf Version: 2024-02-01



Χινι Υιιανι

| #  | Article                                                                                                                                                                                    | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Low-Rankness Guided Group Sparse Representation for Image Restoration. IEEE Transactions on Neural<br>Networks and Learning Systems, 2023, 34, 7593-7607.                                  | 7.2 | 19        |
| 2  | A Hybrid Structural Sparsification Error Model for Image Restoration. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33, 4451-4465.                                      | 7.2 | 21        |
| 3  | Nonconvex Structural Sparsity Residual Constraint for Image Restoration. IEEE Transactions on Cybernetics, 2022, 52, 12440-12453.                                                          | 6.2 | 12        |
| 4  | Plug-and-Play Algorithms for Video Snapshot Compressive Imaging. IEEE Transactions on Pattern<br>Analysis and Machine Intelligence, 2022, 44, 7093-7111.                                   | 9.7 | 33        |
| 5  | Class-Aware Domain Adaptation for Semantic Segmentation of Remote Sensing Images. IEEE<br>Transactions on Geoscience and Remote Sensing, 2022, 60, 1-17.                                   | 2.7 | 23        |
| 6  | End-to-end snapshot compressed super-resolution imaging with deep optics. Optica, 2022, 9, 451.                                                                                            | 4.8 | 15        |
| 7  | Simultaneous Nonlocal Low-Rank And Deep Priors For Poisson Denoising. , 2022, , .                                                                                                          |     | 4         |
| 8  | Snapshot spectral compressive imaging reconstruction using convolution and contextual Transformer. Photonics Research, 2022, 10, 1848.                                                     | 3.4 | 27        |
| 9  | Physics-driven deep learning enables temporal compressive coherent diffraction imaging. Optica, 2022, 9, 677.                                                                              | 4.8 | 16        |
| 10 | Editorial: Introduction to the Special Issue on Deep Learning for High-Dimensional Sensing. IEEE<br>Journal on Selected Topics in Signal Processing, 2022, 16, 603-607.                    | 7.3 | 2         |
| 11 | Deep plug-and-play priors for spectral snapshot compressive imaging. Photonics Research, 2021, 9, B18.                                                                                     | 3.4 | 68        |
| 12 | Triply Complementary Priors for Image Restoration. IEEE Transactions on Image Processing, 2021, 30, 5819-5834.                                                                             | 6.0 | 42        |
| 13 | Snapshot Coherence Tomographic Imaging. IEEE Transactions on Computational Imaging, 2021, 7, 624-637.                                                                                      | 2.6 | 9         |
| 14 | Fast Hyperspectral Image Recovery of Dual-Camera Compressive Hyperspectral Imaging via Non-Iterative<br>Subspace-Based Fusion. IEEE Transactions on Image Processing, 2021, 30, 7170-7183. | 6.0 | 31        |
| 15 | Mid-Infrared Compressive Hyperspectral Imaging. Remote Sensing, 2021, 13, 741.                                                                                                             | 1.8 | 6         |
| 16 | LED-based compressive spectral-temporal imaging. Optics Express, 2021, 29, 10698.                                                                                                          | 1.7 | 13        |
| 17 | Snapshot Compressive Imaging: Theory, Algorithms, and Applications. IEEE Signal Processing Magazine, 2021, 38, 65-88.                                                                      | 4.6 | 159       |
| 18 | Snapshot temporal compressive microscopy using an iterative algorithm with untrained neural networks. Optics Letters, 2021, 46, 1888.                                                      | 1.7 | 28        |

| #  | Article                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Single-pixel neutron imaging with artificial intelligence: Breaking the barrier in multi-parameter imaging, sensitivity, and spatial resolution. Innovation(China), 2021, 2, 100100. | 5.2  | 5         |
| 20 | Super-compression of large electron microscopy time series by deep compressive sensing learning.<br>Patterns, 2021, 2, 100292.                                                       | 3.1  | 18        |
| 21 | Ten-mega-pixel snapshot compressive imaging with a hybrid coded aperture. Photonics Research, 2021,<br>9, 2277.                                                                      | 3.4  | 13        |
| 22 | Low-Rank Regularized Joint Sparsity for Image Denoising. , 2021, , .                                                                                                                 |      | 1         |
| 23 | Perception Inspired Deep Neural Networks For Spectral Snapshot Compressive Imaging. , 2021, , .                                                                                      |      | 4         |
| 24 | Image Restoration via Reconciliation of Group Sparsity and Low-Rank Models. IEEE Transactions on Image Processing, 2021, 30, 5223-5238.                                              | 6.0  | 58        |
| 25 | Dual-view Snapshot Compressive Imaging via Optical Flow Aided Recurrent Neural Network.<br>International Journal of Computer Vision, 2021, 129, 3279-3298.                           | 10.9 | 3         |
| 26 | Deep learning for snapshot compressive imaging. , 2021, , .                                                                                                                          |      | 0         |
| 27 | Active illumination compressive 4D spectral video imaging system. , 2021, , .                                                                                                        |      | 1         |
| 28 | MetaSCI: Scalable and Adaptive Reconstruction for Video Compressive Sensing. , 2021, , .                                                                                             |      | 30        |
| 29 | Deep Gaussian Scale Mixture Prior for Spectral Compressive Imaging. , 2021, , .                                                                                                      |      | 60        |
| 30 | Memory-Efficient Network for Large-scale Video Compressive Sensing. , 2021, , .                                                                                                      |      | 28        |
| 31 | Universal and Flexible Optical Aberration Correction Using Deep-Prior Based Deconvolution. , 2021, , .                                                                               |      | 4         |
| 32 | Self-supervised Neural Networks for Spectral Snapshot Compressive Imaging. , 2021, , .                                                                                               |      | 38        |
| 33 | Exploiting Channel Correlations for NLOS ToA Localization With Multivariate Gaussian Mixture<br>Models. IEEE Wireless Communications Letters, 2020, 9, 70-73.                        | 3.2  | 27        |
| 34 | From Rank Estimation to Rank Approximation: Rank Residual Constraint for Image Restoration. IEEE<br>Transactions on Image Processing, 2020, 29, 3254-3269.                           | 6.0  | 81        |
| 35 | Image Restoration Using Joint Patch-Group-Based Sparse Representation. IEEE Transactions on Image Processing, 2020, 29, 7735-7750.                                                   | 6.0  | 73        |
| 36 | Reconciliation Of Group Sparsity And Low-Rank Models For Image Restoration. , 2020, , .                                                                                              |      | 7         |

| #  | Article                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Plug-and-Play Algorithms for Large-Scale Snapshot Compressive Imaging. , 2020, , .                                                                                       |     | 87        |
| 38 | Drcas: Deep Restoration Network For Hardware Based Compressive Acquisition Scheme. , 2020, , .                                                                           |     | 3         |
| 39 | Group Sparsity Residual Constraint With Non-Local Priors for Image Restoration. IEEE Transactions on Image Processing, 2020, 29, 8960-8975.                              | 6.0 | 78        |
| 40 | Image Restoration via Simultaneous Nonlocal Self-Similarity Priors. IEEE Transactions on Image<br>Processing, 2020, 29, 8561-8576.                                       | 6.0 | 84        |
| 41 | Attention-Based Pyramid Network for Segmentation and Classification of High-Resolution and Hyperspectral Remote Sensing Images. Remote Sensing, 2020, 12, 3501.          | 1.8 | 13        |
| 42 | The Power Of Triply Complementary Priors For Image Compressive Sensing. , 2020, , .                                                                                      |     | 12        |
| 43 | Solving Inverse Problems via Auto-Encoders. IEEE Journal on Selected Areas in Information Theory, 2020, 1, 312-323.                                                      | 1.9 | 15        |
| 44 | Shearlet Enhanced Snapshot Compressive Imaging. IEEE Transactions on Image Processing, 2020, 29,<br>6466-6481.                                                           | 6.0 | 20        |
| 45 | A Hybrid Structural Sparse Error Model for Image Deblocking. , 2020, , .                                                                                                 |     | 7         |
| 46 | Deep learning for video compressive sensing. APL Photonics, 2020, 5, .                                                                                                   | 3.0 | 113       |
| 47 | A Benchmark for Sparse Coding: When Group Sparsity Meets Rank Minimization. IEEE Transactions on<br>Image Processing, 2020, 29, 5094-5109.                               | 6.0 | 74        |
| 48 | Image Compression Based on Compressive Sensing: End-to-End Comparison With JPEG. IEEE Transactions on Multimedia, 2020, 22, 2889-2904.                                   | 5.2 | 45        |
| 49 | Experimental investigation of chirped amplitude modulation heterodyne ghost imaging. Optics<br>Express, 2020, 28, 20808.                                                 | 1.7 | 10        |
| 50 | Realistic phase screen model for forward multiple-scattering media. Optics Letters, 2020, 45, 1031.                                                                      | 1.7 | 4         |
| 51 | Snapshot spatial–temporal compressive imaging. Optics Letters, 2020, 45, 1659.                                                                                           | 1.7 | 44        |
| 52 | Snapshot multispectral endomicroscopy. Optics Letters, 2020, 45, 3897.                                                                                                   | 1.7 | 51        |
| 53 | End-to-End Low Cost Compressive Spectral Imaging with Spatial-Spectral Self-Attention. Lecture Notes in Computer Science, 2020, , 187-204.                               | 1.0 | 65        |
| 54 | BIRNAT: Bidirectional Recurrent Neural Networks with Adversarial Training for Video Snapshot<br>Compressive Imaging. Lecture Notes in Computer Science, 2020, , 258-275. | 1.0 | 32        |

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | 10.1063/1.5140721.2., 2020,,.                                                                                                                                                                                      |     | 0         |
| 56 | A coded aperture microscope for X-ray fluorescence full-field imaging. Journal of Synchrotron<br>Radiation, 2020, 27, 1703-1706.                                                                                   | 1.0 | 2         |
| 57 | Edge Compression: An Integrated Framework for Compressive Imaging Processing on CAVs. , 2020, , .                                                                                                                  |     | 20        |
| 58 | Coprime Lâ€shaped array connected by a triangular spatiallyâ€spread electromagneticâ€vectorâ€sensor for<br>twoâ€dimensional direction of arrival estimation. IET Radar, Sonar and Navigation, 2019, 13, 1609-1615. | 0.9 | 5         |
| 59 | Simultaneous Nonlocal Self-Similarity Prior for Image Denoising. , 2019, , .                                                                                                                                       |     | 2         |
| 60 | lambda-Net: Reconstruct Hyperspectral Images From a Snapshot Measurement. , 2019, , .                                                                                                                              |     | 106       |
| 61 | Deep Tensor ADMM-Net for Snapshot Compressive Imaging. , 2019, , .                                                                                                                                                 |     | 78        |
| 62 | Solving linear inverse problems using generative models. , 2019, , .                                                                                                                                               |     | 3         |
| 63 | Snapshot Compressed Sensing: Performance Bounds and Algorithms. IEEE Transactions on Information Theory, 2019, 65, 8005-8024.                                                                                      | 1.5 | 67        |
| 64 | Rank Minimization for Snapshot Compressive Imaging. IEEE Transactions on Pattern Analysis and<br>Machine Intelligence, 2019, 41, 2990-3006.                                                                        | 9.7 | 207       |
| 65 | A single triangular SS-EMVS aided high-accuracy DOA estimation using a multi-scale L-shaped sparse array. Eurasip Journal on Advances in Signal Processing, 2019, 2019, .                                          | 1.0 | 2         |
| 66 | Deep Learning for Compressive Spectral Imaging. , 2019, , .                                                                                                                                                        |     | 9         |
| 67 | Snapshot Optical Coherence Tomography. , 2019, , .                                                                                                                                                                 |     | 5         |
| 68 | A Multiscale Sparse Array of Spatially Spread Electromagnetic-Vector-Sensors for Direction Finding and Polarization Estimation. IEEE Access, 2018, 6, 9807-9818.                                                   | 2.6 | 25        |
| 69 | A New Nested MIMO Array With Increased Degrees of Freedom and Hole-Free Difference Coarray. IEEE<br>Signal Processing Letters, 2018, 25, 40-44.                                                                    | 2.1 | 53        |
| 70 | A Unified Array Geometry Composed of Multiple Identical Subarrays With Hole-Free Difference<br>Coarrays for Underdetermined DOA Estimation. IEEE Access, 2018, 6, 14238-14254.                                     | 2.6 | 33        |
| 71 | Deep Learning for Lensless Compressive Imaging. Microscopy and Microanalysis, 2018, 24, 506-507.                                                                                                                   | 0.2 | 1         |
| 72 | Nonlocal Low-Rank Tensor Factor Analysis for Image Restoration. , 2018, , .                                                                                                                                        |     | 15        |

| #  | Article                                                                                                                                     | IF         | CITATIONS       |
|----|---------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------|
| 73 | Group Sparsity Residual with Non-Local Samples for Image Denoising. , 2018, , .                                                             |            | 12              |
| 74 | Compressive Imaging Via One-Shot Measurements. , 2018, , .                                                                                  |            | 13              |
| 75 | Parallel lensless compressive imaging via deep convolutional neural networks. Optics Express, 2018, 26, 1962.                               | 1.7        | 60              |
| 76 | Non-convex weighted â"" nuclear norm based ADMM framework for image restoration. Neurocomputing, 2018, 311, 209-224.                        | 3.5        | 51              |
| 77 | On the Fundamental Limit of Multipath Matching Pursuit. IEEE Journal on Selected Topics in Signal<br>Processing, 2018, 12, 916-927.         | 7.3        | 15              |
| 78 | Adaptive step-size iterative algorithm for sparse signal recovery. Signal Processing, 2018, 152, 273-285.                                   | 2.1        | 5               |
| 79 | Wavelet tree structure based speckle noise removal for optical coherence tomography. , 2018, , .                                            |            | Ο               |
| 80 | Video compressed imaging using side information (Rising Researcher Presentation) (Conference) Tj ETQq0 0 0 0                                | rgBT /Over | lock 10 Tf 50 ၊ |
| 81 | Hyperspectral image super-resolution via convolutional neural network. , 2017, , .                                                          |            | 20              |
| 82 | Convolutional factor analysis inspired compressive sensing. , 2017, , .                                                                     |            | 2               |
| 83 | Block-wise lensless compressive camera. , 2017, , .                                                                                         |            | 5               |
| 84 | Noise adaptive wavelet thresholding for speckle noise removal in optical coherence tomography.<br>Biomedical Optics Express, 2017, 8, 2720. | 1.5        | 68              |
| 85 | Compressive high-speed stereo imaging. Optics Express, 2017, 25, 18182.                                                                     | 1.7        | 48              |
| 86 | Compressive video sensing with side information. Applied Optics, 2017, 56, 2697.                                                            | 2.1        | 20              |
| 87 | Hyperspectral Image Spatial Super-Resolution via 3D Full Convolutional Neural Network. Remote<br>Sensing, 2017, 9, 1139.                    | 1.8        | 192             |
| 88 | Adaptive Wavelet Thresholding for Optical Coherence Tomography Image Denoising. , 2017, , .                                                 |            | 2               |
| 89 | Compressive Temporal RGB-D Imaging. , 2017, , .                                                                                             |            | 2               |
| 90 | Structured illumination temporal compressive microscopy. Biomedical Optics Express, 2016, 7, 746.                                           | 1.5        | 38              |

XIN YUAN

| #   | Article                                                                                                                                                                                        | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | High-speed compressive range imaging based on active illumination. Optics Express, 2016, 24, 22836.                                                                                            | 1.7 | 32        |
| 92  | Improved nested array with holeâ€free DCA and more degrees of freedom. Electronics Letters, 2016, 52, 2068-2070.                                                                               | 0.5 | 88        |
| 93  | Computational Snapshot Multispectral Cameras: Toward dynamic capture of the spectral world. IEEE<br>Signal Processing Magazine, 2016, 33, 95-108.                                              | 4.6 | 178       |
| 94  | SLOPE: Shrinkage of Local Overlapping Patches Estimator for Lensless Compressive Imaging. IEEE Sensors Journal, 2016, 16, 8091-8102.                                                           | 2.4 | 21        |
| 95  | Compressive video microscope via structured illumination. , 2016, , .                                                                                                                          |     | 8         |
| 96  | Classification and Reconstruction of High-Dimensional Signals From Low-Dimensional Features in the Presence of Side Information. IEEE Transactions on Information Theory, 2016, 62, 6459-6492. | 1.5 | 31        |
| 97  | Generalized alternating projection based total variation minimization for compressive sensing. , 2016, ,                                                                                       |     | 142       |
| 98  | A general framework for reconstruction and classification from compressive measurements with side information. , 2016, , .                                                                     |     | 1         |
| 99  | Compressive Sensing in Microscopy: a Tutorial. Microscopy and Microanalysis, 2016, 22, 2084-2085.                                                                                              | 0.2 | 3         |
| 100 | A new array geometry for DOA estimation with enhanced degrees of freedom. , 2016, , .                                                                                                          |     | 25        |
| 101 | Compressive dynamic range imaging via Bayesian shrinkage dictionary learning. Optical Engineering, 2016, 55, 123110.                                                                           | 0.5 | 12        |
| 102 | Efficient patch-based approach for compressive depth imaging. Applied Optics, 2016, 55, 7556.                                                                                                  | 2.1 | 20        |
| 103 | Compressive temporal stereo-vision imaging. , 2016, , .                                                                                                                                        |     | 4         |
| 104 | Multi-scale Bayesian reconstruction of compressive X-ray image. , 2015, , .                                                                                                                    |     | 2         |
| 105 | TEM Video Compressive Sensing. Microscopy and Microanalysis, 2015, 21, 1583-1584.                                                                                                              | 0.2 | 4         |
| 106 | Polynomial-phase signal direction-finding and source-tracking with a single acoustic vector sensor. , 2015, , .                                                                                |     | 0         |
| 107 | Applying compressive sensing to TEM video: a substantial frame rate increase on any camera. Advanced Structural and Chemical Imaging, 2015, 1, .                                               | 4.0 | 55        |
| 108 | Structured Illumination Temporal Compressive Microscopy. , 2015, , .                                                                                                                           |     | 0         |

| #   | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Collaborative compressive X-ray image reconstruction. , 2015, , .                                                                                                                                                                                          |     | 2         |
| 110 | Classification and reconstruction of compressed GMM signals with side information. , 2015, , .                                                                                                                                                             |     | 3         |
| 111 | A concentration-of-measure inequality for multiple-measurement models. , 2015, , .                                                                                                                                                                         |     | 0         |
| 112 | Compressive Sensing by Learning a Gaussian Mixture Model From Measurements. IEEE Transactions on<br>Image Processing, 2015, 24, 106-119.                                                                                                                   | 6.0 | 136       |
| 113 | Temporal Compressive Sensing for Video. Applied and Numerical Harmonic Analysis, 2015, , 41-74.                                                                                                                                                            | 0.1 | 7         |
| 114 | Compressive Hyperspectral Imaging With Side Information. IEEE Journal on Selected Topics in Signal Processing, 2015, 9, 964-976.                                                                                                                           | 7.3 | 152       |
| 115 | Signal Recovery and System Calibration from Multiple Compressive Poisson Measurements. SIAM<br>Journal on Imaging Sciences, 2015, 8, 1923-1954.                                                                                                            | 1.3 | 12        |
| 116 | Spatial light modulator based color polarization imaging. Optics Express, 2015, 23, 11912.                                                                                                                                                                 | 1.7 | 50        |
| 117 | Image translation for single-shot focal tomography. Optica, 2015, 2, 822.                                                                                                                                                                                  | 4.8 | 39        |
| 118 | Coded Aperture Compressive Spectral-Temporal Imaging. , 2015, , .                                                                                                                                                                                          |     | 7         |
| 119 | Spectral-temporal compressive imaging. Optics Letters, 2015, 40, 4054.                                                                                                                                                                                     | 1.7 | 82        |
| 120 | Low-Cost Compressive Sensing for Color Video and Depth. , 2014, , .                                                                                                                                                                                        |     | 62        |
| 121 | An integrated transcriptome and expressed variant analysis of sepsis survival and death. Genome<br>Medicine, 2014, 6, 111.                                                                                                                                 | 3.6 | 70        |
| 122 | Corrections to "Vector Cross-Product Direction-Finding' With an Electromagnetic Vector-Sensor of<br>Six Orthogonally Oriented But Spatially Noncollocating Dipoles/Loops―[Jan 11 160-171]. IEEE<br>Transactions on Signal Processing, 2014, 62, 1028-1030. | 3.2 | 17        |
| 123 | Hierarchical Infinite Divisibility for Multiscale Shrinkage. IEEE Transactions on Signal Processing, 2014, 62, 4363-4374.                                                                                                                                  | 3.2 | 19        |
| 124 | Coherent sources direction finding and polarization estimation with various compositions of spatially spread polarized antenna arrays. Signal Processing, 2014, 102, 265-281.                                                                              | 2.1 | 30        |
| 125 | Video Compressive Sensing Using Gaussian Mixture Models. IEEE Transactions on Image Processing, 2014, 23, 4863-4878.                                                                                                                                       | 6.0 | 158       |
|     |                                                                                                                                                                                                                                                            |     |           |

126 Compressive extended depth of field using image space coding. , 2014, , .

8

XIN YUAN

| #   | Article                                                                                                                                                                                                                 | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Gaussian mixture model for video compressive sensing. , 2013, , .                                                                                                                                                       |     | 12        |
| 128 | Adaptive temporal compressive sensing for video. , 2013, , .                                                                                                                                                            |     | 36        |
| 129 | Spatially Spread Dipole/Loop Quads/Quints: For Direction Finding and Polarization Estimation. IEEE<br>Antennas and Wireless Propagation Letters, 2013, 12, 1081-1084.                                                   | 2.4 | 23        |
| 130 | Compressive Sensing for Video Using a Passive Coding Element. , 2013, , .                                                                                                                                               |     | 9         |
| 131 | Coded aperture compressive temporal imaging. Optics Express, 2013, 21, 10526.                                                                                                                                           | 1.7 | 320       |
| 132 | A directionally tunable but frequency-invariant beamformer on an acoustic velocity-sensor triad to enhance speech perception. Journal of the Acoustical Society of America, 2012, 131, 3891-3902.                       | 0.5 | 23        |
| 133 | Polynomial-phase signal source tracking using an electromagnetic vector-sensor. , 2012, , .                                                                                                                             |     | 9         |
| 134 | Cramér–Rao bounds of angle-of-arrival and polarisation estimation for various triads. IET<br>Microwaves, Antennas and Propagation, 2012, 6, 1651-1664.                                                                  | 0.7 | 7         |
| 135 | Direction-Finding Wideband Linear FM Sources with Triangular Arrays. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 2416-2425.                                                                        | 2.6 | 22        |
| 136 | Coherent Source Direction-Finding using a Sparsely-Distributed Acoustic Vector-Sensor Array. IEEE<br>Transactions on Aerospace and Electronic Systems, 2012, 48, 2710-2715.                                             | 2.6 | 20        |
| 137 | Various Compositions to Form a Triad of Collocated Dipoles/Loops, for Direction Finding and Polarization Estimation. IEEE Sensors Journal, 2012, 12, 1763-1771.                                                         | 2.4 | 57        |
| 138 | Estimating the DOA and the Polarization of a Polynomial-Phase Signal Using a Single Polarized<br>Vector-Sensor. IEEE Transactions on Signal Processing, 2012, 60, 1270-1282.                                            | 3.2 | 57        |
| 139 | Quad Compositions of Collocated Dipoles and Loops: For Direction Finding and Polarization Estimation. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1044-1047.                                              | 2.4 | 12        |
| 140 | Enhanced "vector-cross-product" direction-finding using a constrained sparse triangular-array.<br>Eurasip Journal on Advances in Signal Processing, 2012, 2012, .                                                       | 1.0 | 16        |
| 141 | Polarization Estimation With a Dipole-Dipole Pair, a Dipole-Loop Pair, or a Loop-Loop Pair of Various<br>Orientations. IEEE Transactions on Antennas and Propagation, 2012, 60, 2442-2452.                              | 3.1 | 45        |
| 142 | Direction-Finding with a Misoriented Acoustic Vector Sensor. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48, 1809-1815.                                                                                | 2.6 | 15        |
| 143 | Cramér-rao bound of the direction-of-arrival estimation using a spatially spread electromagnetic vector-sensor. , 2011, , .                                                                                             |     | 7         |
| 144 | "Vector Cross-Product Direction-Finding―With an Electromagnetic Vector-Sensor of Six<br>Orthogonally Oriented But Spatially Noncollocating Dipoles/Loops. IEEE Transactions on Signal<br>Processing, 2011, 59, 160-171. | 3.2 | 125       |