Christian Kowol

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Elemental analysis: an important purity control but prone to manipulations. Inorganic Chemistry Frontiers, 2022, 9, 412-416.	6.0	13
2	A platinum(IV) prodrug strategy to overcome glutathione-based oxaliplatin resistance. Communications Chemistry, 2022, 5, .	4.5	31
3	The coordination modes of (thio)semicarbazone copper(II) complexes strongly modulate the solution chemical properties and mechanism of anticancer activity. Journal of Inorganic Biochemistry, 2022, 231, 111786.	3.5	19
4	Albumin-targeting of an oxaliplatin-releasing platinum(<scp>iv</scp>) prodrug results in pronounced anticancer activity due to endocytotic drug uptake <i>in vivo</i> . Chemical Science, 2021, 12, 12587-12599.	7.4	24
5	Development of a cobalt(<scp>iii</scp>)-based ponatinib prodrug system. Inorganic Chemistry Frontiers, 2021, 8, 2468-2485.	6.0	6
6	Structure–Activity Relationships of Triple-Action Platinum(IV) Prodrugs with Albumin-Binding Properties and Immunomodulating Ligands. Journal of Medicinal Chemistry, 2021, 64, 12132-12151.	6.4	34
7	Liposomal formulations of anticancer copper(<scp>ii</scp>) thiosemicarbazone complexes. Dalton Transactions, 2021, 50, 16053-16066.	3.3	5
8	Landomycins as glutathione-depleting agents and natural fluorescent probes for cellular Michael adduct-dependent quinone metabolism. Communications Chemistry, 2021, 4, .	4.5	9
9	Improving the Stability of EGFR Inhibitor Cobalt(III) Prodrugs. Inorganic Chemistry, 2020, 59, 17794-17810.	4.0	11
10	Complex formation and cytotoxicity of Triapine derivatives: a comparative solution study on the effect of the chalcogen atom and NH-methylation. Dalton Transactions, 2020, 49, 16887-16902.	3.3	22
11	Cancer Cell Resistance Against the Clinically Investigated Thiosemicarbazone COTI-2 Is Based on Formation of Intracellular Copper Complex Glutathione Adducts and ABCC1-Mediated Efflux. Journal of Medicinal Chemistry, 2020, 63, 13719-13732.	6.4	33
12	Improving the Stability of Maleimide–Thiol Conjugation for Drug Targeting. Chemistry - A European Journal, 2020, 26, 15867-15870.	3.3	29
13	High Copper Complex Stability and Slow Reduction Kinetics as Key Parameters for Improved Activity, Paraptosis Induction, and Impact on Drug-Resistant Cells of Anticancer Thiosemicarbazones. Antioxidants and Redox Signaling, 2020, 33, 395-414.	5.4	28
14	Reactive Oxygen Species (ROS)-Sensitive Prodrugs of the Tyrosine Kinase Inhibitor Crizotinib. Molecules, 2020, 25, 1149.	3.8	6
15	Development and biological investigations of hypoxia-sensitive prodrugs of the tyrosine kinase inhibitor crizotinib. Bioorganic Chemistry, 2020, 99, 103778.	4.1	11
16	Lipid dropletâ€mediated scavenging as novel intrinsic and adaptive resistance factor against the multikinase inhibitor ponatinib. International Journal of Cancer, 2020, 147, 1680-1693.	5.1	16
17	Comparative Studies on the Human Serum Albumin Binding of the Investigational EGFR Inhibitor KP2187, Its Hypoxia-Activated Cobalt Complex, and a Series of Clinically Approved Inhibitors. Proceedings (mdpi), 2019, 22, .	0.2	0
18	Zweifel an einem Dogma: Hydrolyse Ã q uatorialer Liganden von Pt ^{IV} â€Komplexen unter physiologischen Bedingungen. Angewandte Chemie, 2019, 131, 7542-7547.	2.0	5

CHRISTIAN KOWOL

#	Article	IF	CITATIONS
19	A Dogma in Doubt: Hydrolysis of Equatorial Ligands of Pt ^{IV} Complexes under Physiological Conditions. Angewandte Chemie - International Edition, 2019, 58, 7464-7469.	13.8	46
20	Synthesis and Cytotoxicity of Water-Soluble Dual- and Triple-Action Satraplatin Derivatives: Replacement of Equatorial Chlorides of Satraplatin by Acetates. Inorganic Chemistry, 2019, 58, 16676-16688.	4.0	13
21	Synthesis, Characterization and <i>inâ€vitro</i> Studies of a Cathepsin Bâ€Cleavable Prodrug of the VEGFR Inhibitor Sunitinib. Chemistry and Biodiversity, 2019, 16, e1800520.	2.1	9
22	Synthesis and biological evaluation of biotin-conjugated anticancer thiosemicarbazones and their iron(III) and copper(II) complexes. Journal of Inorganic Biochemistry, 2019, 190, 85-97.	3.5	32
23	Metal Drugs and the Anticancer Immune Response. Chemical Reviews, 2019, 119, 1519-1624.	47.7	237
24	Anticancer Thiosemicarbazones: Chemical Properties, Interaction with Iron Metabolism, and Resistance Development. Antioxidants and Redox Signaling, 2019, 30, 1062-1082.	5.4	137
25	Comparison of metabolic pathways of different α-N-heterocyclic thiosemicarbazones. Analytical and Bioanalytical Chemistry, 2018, 410, 2343-2361.	3.7	12
26	Structure elucidation and quantification of the reduction products of anticancer Pt(<scp>iv</scp>) prodrugs by electrochemistry/mass spectrometry (EC-MS). Analyst, The, 2018, 143, 1997-2001.	3.5	6
27	Bacterial ghosts as adjuvant to oxaliplatin chemotherapy in colorectal carcinomatosis. Oncolmmunology, 2018, 7, e1424676.	4.6	35
28	Comparative studies on the human serum albumin binding of the clinically approved EGFR inhibitors gefitinib, erlotinib, afatinib, osimertinib and the investigational inhibitor KP2187. Journal of Pharmaceutical and Biomedical Analysis, 2018, 154, 321-331.	2.8	20
29	A comparative study of α- N -pyridyl thiosemicarbazones: Spectroscopic properties, solution stability and copper(II) complexation. Inorganica Chimica Acta, 2018, 472, 264-275.	2.4	22
30	Complexes of pyridoxal thiosemicarbazones formed with vanadium(IV/V) and copper(II): Solution equilibrium and structure. Inorganica Chimica Acta, 2018, 472, 243-253.	2.4	17
31	Lysosomal Sequestration Impairs the Activity of the Preclinical FGFR Inhibitor PD173074. Cells, 2018, 7, 259.	4.1	8
32	The thiosemicarbazone Me2NNMe2 induces paraptosis by disrupting the ER thiol redox homeostasis based on protein disulfide isomerase inhibition. Cell Death and Disease, 2018, 9, 1052.	6.3	38
33	Critical assessment of different methods for quantitative measurement of metallodrug-protein associations. Analytical and Bioanalytical Chemistry, 2018, 410, 7211-7220.	3.7	17
34	Nanoformulations of anticancer FGFR inhibitors with improved therapeutic index. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2632-2643.	3.3	22
35	EGFR-targeting peptide-coupled platinum(IV) complexes. Journal of Biological Inorganic Chemistry, 2017, 22, 591-603.	2.6	23
36	An albumin-based tumor-targeted oxaliplatin prodrug with distinctly improved anticancer activity in vivo. Chemical Science, 2017, 8, 2241-2250.	7.4	114

CHRISTIAN KOWOL

#	Article	IF	CITATIONS
37	Multifunctional α _v β ₆ Integrin-Specific Peptide–Pt(IV) Conjugates for Cancer Cell Targeting. Bioconjugate Chemistry, 2017, 28, 2429-2439.	3.6	18
38	Understanding the metabolism of the anticancer drug Triapine: electrochemical oxidation, microsomal incubation and in vivo analysis using LC-HRMS. Analyst, The, 2017, 142, 3165-3176.	3.5	18
39	Intrinsic fluorescence of the clinically approved multikinase inhibitor nintedanib reveals lysosomal sequestration as resistance mechanism in FGFR-driven lung cancer. Journal of Experimental and Clinical Cancer Research, 2017, 36, 122.	8.6	33
40	Another step toward DNA selective targeting: Ni ^{II} and Cu ^{II} complexes of a Schiff base ligand able to bind gene promoter G-quadruplexes. Dalton Transactions, 2016, 45, 7758-7767.	3.3	49
41	Targeting a Targeted Drug: An Approach Toward Hypoxiaâ€Activatable Tyrosine Kinase Inhibitor Prodrugs. ChemMedChem, 2016, 11, 2410-2421.	3.2	18
42	Nanoformulations of anticancer thiosemicarbazones to reduce methemoglobin formation and improve anticancer activity. RSC Advances, 2016, 6, 55848-55859.	3.6	11
43	Impact of Stepwise NH ₂ -Methylation of Triapine on the Physicochemical Properties, Anticancer Activity, and Resistance Circumvention. Journal of Medicinal Chemistry, 2016, 59, 6739-6752.	6.4	42
44	Multi-scale imaging of anticancer platinum(<scp>iv</scp>) compounds in murine tumor and kidney. Chemical Science, 2016, 7, 3052-3061.	7.4	36
45	Differences in protein binding and excretion of Triapine and its Fe(III) complex. Journal of Inorganic Biochemistry, 2016, 160, 61-69.	3.5	20
46	Loss of phosphodiesterase 4D mediates acquired triapine resistance via Epac-Rap1-Integrin signaling. Oncotarget, 2016, 7, 84556-84574.	1.8	15
47	Triapine-mediated ABCB1 induction via PKC induces widespread therapy unresponsiveness but is not underlying acquired triapine resistance. Cancer Letters, 2015, 361, 112-120.	7.2	24
48	Vanadium(IV/V) complexes of Triapine and related thiosemicarbazones: Synthesis, solution equilibrium and bioactivity. Journal of Inorganic Biochemistry, 2015, 152, 62-73.	3.5	20
49	Metal Drugs. , 2015, , 2782-2785.		0
50	Metal Drugs. , 2015, , 1-4.		0
51	Calpain-Mediated Integrin Deregulation as a Novel Mode of Action for the Anticancer Gallium Compound KP46. Molecular Cancer Therapeutics, 2014, 13, 2436-2449.	4.1	25
52	Enhanced Anticancer Activity and Circumvention of Resistance Mechanisms by Novel Polymeric/Phospholipidic Nanocarriers of Doxorubicin. Journal of Biomedical Nanotechnology, 2014, 10, 1369-1381.	1.1	21
53	Tumorâ€Targeting of EGFR Inhibitors by Hypoxiaâ€Mediated Activation. Angewandte Chemie - International Edition, 2014, 53, 12930-12935.	13.8	55
54	Triapine and a More Potent Dimethyl Derivative Induce Endoplasmic Reticulum Stress in Cancer Cells. Molecular Pharmacology, 2014, 85, 451-459.	2.3	35

CHRISTIAN KOWOL

#	Article	IF	CITATIONS
55	Poly(lactic acid) nanoparticles of the lead anticancer ruthenium compound KP1019 and its surfactant-mediated activation. Dalton Transactions, 2014, 43, 1096-1104.	3.3	35
56	NKP-1339, the first ruthenium-based anticancer drug on the edge to clinical application. Chemical Science, 2014, 5, 2925-2932.	7.4	552
57	Tumorspezifische, Hypoxieâ€basierte Aktivierung von EGFRâ€Inhibitoren. Angewandte Chemie, 2014, 126, 13144-13149.	2.0	8
58	Nanoformulation Improves Activity of the (pre)Clinical Anticancer Ruthenium Complex KP1019. Journal of Biomedical Nanotechnology, 2014, 10, 877-884.	1.1	36
59	Maleimide-functionalised platinum(iv) complexes as a synthetic platform for targeted drug delivery. Chemical Communications, 2013, 49, 2249.	4.1	84
60	Synergistic Anticancer Activity of Arsenic Trioxide with Erlotinib Is Based on Inhibition of EGFR-Mediated DNA Double-Strand Break Repair. Molecular Cancer Therapeutics, 2013, 12, 1073-1084.	4.1	46
61	Unsymmetric Mono- and Dinuclear Platinum(IV) Complexes Featuring an Ethylene Glycol Moiety: Synthesis, Characterization, and Biological Activity. Journal of Medicinal Chemistry, 2012, 55, 11052-11061.	6.4	34
62	Novel tetracarboxylatoplatinum(<scp>iv</scp>) complexes as carboplatin prodrugs. Dalton Transactions, 2012, 41, 14404-14415.	3.3	76
63	Complexâ€Formation Ability of Salicylaldehyde Thiosemicarbazone towards Zn ^{II} , Cu ^{II} , Fe ^{II} , Fe ^{III} and Ga ^{III} lons. European Journal of Inorganic Chemistry, 2012, 2012, 4036-4047.	2.0	44
64	Impact of terminal dimethylation on the resistance profile of α-N-heterocyclic thiosemicarbazones. Biochemical Pharmacology, 2012, 83, 1623-1633.	4.4	16
65	Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds. Journal of Biological Inorganic Chemistry, 2012, 17, 409-423.	2.6	120
66	Interaction of Triapine and related thiosemicarbazones with iron(iii)/(ii) and gallium(iii): a comparative solution equilibrium study. Dalton Transactions, 2011, 40, 5895.	3.3	65
67	Anticancer Activity of Metal Complexes: Involvement of Redox Processes. Antioxidants and Redox Signaling, 2011, 15, 1085-1127.	5.4	420
68	Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde) Tj ETQq0 Biochemistry, 2011, 105, 1422-1431.) 0 0 rgBT 3.5	/Overlock 10 105
69	Hydroxy and ether functionalized dithiolanes: Models for the active site of the [FeFe] hydrogenase. Journal of Organometallic Chemistry, 2011, 696, 1084-1088.	1.8	14
70	A quantitative structure–activity approach for lipophilicity estimation of antitumor complexes of different metals using microemulsion electrokinetic chromatography. Journal of Pharmaceutical and Biomedical Analysis, 2011, 55, 409-413.	2.8	17
71	Tuning of lipophilicity and cytotoxic potency by structural variation of anticancer platinum(IV) complexes. Journal of Inorganic Biochemistry, 2011, 105, 46-51.	3.5	107
72	Comparative Solution Equilibrium Study of the Interactions of Copper(II), Iron(II) and Zinc(II) with Triapine (3â€Aminopyridineâ€2â€carbaldehyde Thiosemicarbazone) and Related Ligands. European Journal of Inorganic Chemistry, 2010, 2010, 1717-1728.	2.0	74

#	Article	IF	CITATIONS
73	Synthetic and Electrochemical Studies of [2Fe2S] Complexes Containing a 4â€Aminoâ€1,2â€dithiolaneâ€4â€carboxylic Acid Moiety. European Journal of Inorganic Chemistry, 2010, 2010, 5079-5086.	2.0	9
74	Fluorescence properties and cellular distribution of the investigational anticancer drugTriapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone) and its zinc(ii) complex. Dalton Transactions, 2010, 39, 704-706.	3.3	77
75	Investigation of amino acid containing [FeFe] hydrogenase models concerning pendant base effects. Journal of Inorganic Biochemistry, 2009, 103, 1236-1244.	3.5	18
76	Impact of Metal Coordination on Cytotoxicity of 3-Aminopyridine-2-carboxaldehyde Thiosemicarbazone (Triapine) and Novel Insights into Terminal Dimethylation. Journal of Medicinal Chemistry, 2009, 52, 5032-5043.	6.4	143
77	An Electrochemical Study of Antineoplastic Gallium, Iron and Ruthenium Complexes with Redox Noninnocent α-N-Heterocyclic Chalcogensemicarbazones. Inorganic Chemistry, 2008, 47, 11032-11047.	4.0	57
78	Synthesis and Reactivity of the Aquation Product of the Antitumor Complex <i>trans</i> -[Ru ^{III} Cl ₄ (indazole) ₂] ^{â^²} . Inorganic Chemistry, 2008, 47, 6513-6523.	4.0	50
79	Gallium(III) and Iron(III) Complexes of α-N-Heterocyclic Thiosemicarbazones:  Synthesis, Characterization, Cytotoxicity, and Interaction with Ribonucleotide Reductase. Journal of Medicinal Chemistry, 2007, 50, 1254-1265.	6.4	145
80	Ruthenium(II) Complexes of Thiosemicarbazones: The First Water-Soluble Complex with pH-Dependent Antiproliferative Activity. European Journal of Inorganic Chemistry, 2007, 2007, 2870-2878.	2.0	43
81	Effect of metal ion complexation and chalcogen donor identity on the antiproliferative activity of 2-acetylpyridine N,N-dimethyl(chalcogen)semicarbazones. Journal of Inorganic Biochemistry, 2007, 101, 1946-1957.	3.5	71
82	The First Metal-Based Paullone Derivative with High Antiproliferative Activity in Vitro. Inorganic Chemistry, 2006, 45, 1945-1950.	4.0	46
83	Preclinical characterization of anticancer gallium(III) complexes: Solubility, stability, lipophilicity and binding to serum proteins. Journal of Inorganic Biochemistry, 2006, 100, 1819-1826.	3.5	100