
Chiung-Kuei Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637267/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Tenâ€Eleven Translocation 1 Promotes Malignant Progression of Cholangiocarcinoma With Wildâ€Type Isocitrate Dehydrogenase 1. Hepatology, 2021, 73, 1747-1763.	7.3	20
2	Targeting Aspartate Beta-Hydroxylase with the Small Molecule Inhibitor MO-I-1182 Suppresses Cholangiocarcinoma Metastasis. Digestive Diseases and Sciences, 2021, 66, 1080-1089.	2.3	6
3	Bio-nanoparticle based therapeutic vaccine induces immunogenic response against triple negative breast cancer. American Journal of Cancer Research, 2021, 11, 4141-4174.	1.4	1
4	The metabolite, alpha-ketoglutarate inhibits non-alcoholic fatty liver disease progression by targeting lipid metabolism. Liver Research, 2020, 4, 94-100.	1.4	7
5	Chronic ethanolâ€mediated hepatocyte apoptosis links to decreased TET1 and 5â€hydroxymethylcytosine formation. FASEB Journal, 2019, 33, 1824-1835.	0.5	16
6	Wnt signaling in liver disease: emerging trends from a bibliometric perspective. PeerJ, 2019, 7, e7073.	2.0	3
7	Aspartate beta-hydroxylase promotes cholangiocarcinoma progression by modulating RB1 phosphorylation. Cancer Letters, 2018, 429, 1-10.	7.2	14
8	Alcoholâ€mediated miRâ€34a modulates hepatocyte growth and apoptosis. Journal of Cellular and Molecular Medicine, 2018, 22, 3987-3995.	3.6	13
9	Alanine-glyoxylate aminotransferase 1 (AGXT1) is a novel marker for hepatocellular carcinomas. Human Pathology, 2018, 80, 76-81.	2.0	6
10	The role of exosomes in hepatitis, liver cirrhosis and hepatocellular carcinoma. Journal of Cellular and Molecular Medicine, 2017, 21, 986-992.	3.6	50
11	Anti-Tumor Effects of Second Generation β-Hydroxylase Inhibitors on Cholangiocarcinoma Development and Progression. PLoS ONE, 2016, 11, e0150336.	2.5	31
12	Aspartate βâ€hydroxylase modulates cellular senescence through glycogen synthase kinase 3β in hepatocellular carcinoma. Hepatology, 2016, 63, 1213-1226.	7.3	48
13	Expression of transforming growth factor β1 promotes cholangiocarcinoma development and progression. Cancer Letters, 2016, 380, 153-162.	7.2	25
14	Androgen receptor (AR) in cardiovascular diseases. Journal of Endocrinology, 2016, 229, R1-R16.	2.6	58
15	Serum chemokine (CC motif) ligand 2 level as a diagnostic, predictive, and prognostic biomarker for prostate cancer. Oncotarget, 2016, 7, 8389-8398.	1.8	34
16	Chronic Ethanolâ€Induced Impairment of Wnt/ <i>β</i> â€Catenin Signaling is Attenuated by <scp>PPAR</scp> â€ <i>δ</i> Agonist. Alcoholism: Clinical and Experimental Research, 2015, 39, 969-979.	2.4	16
17	Restoration of Wnt∫î²-catenin signaling attenuates alcoholic liver disease progression in a rat model. Journal of Hepatology, 2015, 63, 191-198.	3.7	44
18	Androgen Receptor Promotes Abdominal Aortic Aneurysm Development via Modulating Inflammatory Interleukin-11± and Transforming Growth Factor-1²1 Expression. Hypertension, 2015, 66, 881-891.	2.7	37

CHIUNG-KUEI HUANG

#	Article	IF	CITATIONS
19	Aspartate Î ² -hydroxylase expression promotes a malignant pancreatic cellular phenotype. Oncotarget, 2015, 6, 1231-1248.	1.8	49
20	Androgen Receptor Enhances Kidney Stone-CaOx Crystal Formation via Modulation of Oxalate Biosynthesis & Oxidative Stress. Molecular Endocrinology, 2014, 28, 1291-1303.	3.7	48
21	A cell-surface β-hydroxylase is a biomarker and therapeutic target for hepatocellular carcinoma. Hepatology, 2014, 60, 1302-1313.	7.3	55
22	Determination of androgen receptor degradation enhancer ASC-J9® in mouse sera and organs with liquid chromatography tandem mass spectrometry. Journal of Pharmaceutical and Biomedical Analysis, 2014, 88, 117-122.	2.8	19
23	New Therapy via Targeting Androgen Receptor in Monocytes/Macrophages to Battle Atherosclerosis. Hypertension, 2014, 63, 1345-1353.	2.7	40
24	Concise Review: Androgen Receptor Differential Roles in Stem/Progenitor Cells Including Prostate, Embryonic, Stromal, and Hematopoietic Lineages. Stem Cells, 2014, 32, 2299-2308.	3.2	39
25	Outcomes and predictive factors of prostate cancer patients with extremely high prostate-specific antigen level. Journal of Cancer Research and Clinical Oncology, 2014, 140, 1413-1419.	2.5	35
26	A Mouse Model of Liver Injury to Evaluate Paracrine and Endocrine Effects of Bone Marrow Mesenchymal Stem Cells. Methods in Molecular Biology, 2014, 1213, 69-79.	0.9	5
27	Loss of androgen receptor promotes adipogenesis but suppresses osteogenesis in bone marrow stromal cells. Stem Cell Research, 2013, 11, 938-950.	0.7	21
28	Targeting androgen receptor in bone marrow mesenchymal stem cells leads to better transplantation therapy efficacy in liver cirrhosis. Hepatology, 2013, 57, 1550-1563.	7.3	58
29	Suppression of Androgen Receptor Enhances the Self-renewal of Mesenchymal Stem Cells Through Elevated Expression of EGFR. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1222-1234.	4.1	27
30	Targeting Stromal Androgen Receptor Suppresses Prolactin-Driven Benign Prostatic Hyperplasia (BPH). Molecular Endocrinology, 2013, 27, 1617-1631.	3.7	37
31	Increased Chemosensitivity via Targeting Testicular Nuclear Receptor 4 (TR4)-Oct4-Interleukin 1 Receptor Antagonist (IL1Ra) Axis in Prostate Cancer CD133+ Stem/Progenitor Cells to Battle Prostate Cancer. Journal of Biological Chemistry, 2013, 288, 16476-16483.	3.4	49
32	Characterization of Gene Amplification–Driven SKP2 Overexpression in Myxofibrosarcoma: Potential Implications in Tumor Progression and Therapeutics. Clinical Cancer Research, 2012, 18, 1598-1610.	7.0	40
33	Suppressor role of androgen receptor in proliferation of prostate basal epithelial and progenitor cells. Journal of Endocrinology, 2012, 213, 173-182.	2.6	39
34	Targeting the Unique Methylation Pattern of Androgen Receptor (AR) Promoter in Prostate Stem/Progenitor Cells with 5-Aza-2′-deoxycytidine (5-AZA) Leads to Suppressed Prostate Tumorigenesis. Journal of Biological Chemistry, 2012, 287, 39954-39966.	3.4	58
35	Loss of stromal androgen receptor leads to suppressed prostate tumourigenesis via modulation of proâ€inflammatory cytokines/chemokines. EMBO Molecular Medicine, 2012, 4, 791-807.	6.9	70
36	Flow Cytometric Analysis of DNA Ploidy and S-Phase Fraction in Primary Localized Myxofibrosarcoma: Correlations with Clinicopathological Factors, Skp2 Expression, and Patient Survival. Annals of Surgical Oncology, 2008, 15, 2239-2249.	1.5	10

#	Article	IF	CITATIONS
37	Altered TNSALP Expression and Phosphate Regulation Contribute to Reduced Mineralization in Mice Lacking Androgen Receptor. Molecular and Cellular Biology, 2008, 28, 7354-7367.	2.3	23
38	Changes in polyamine pattern are involved in floral initiation and development in Polianthes tuberosa. Journal of Plant Physiology, 2004, 161, 709-713.	3.5	29