
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372440/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66
2	Curved Mirror Arrays for Light Extraction in Top-Emitting Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2022, 14, 9377-9385.	4.0	5
3	Room-temperature superfluorescence in hybrid perovskites and its origins. Nature Photonics, 2022, 16, 324-329.	15.6	31
4	Effects of Refractive Index on Light Outcoupling Efficiency in OLEDs. , 2022, , 359-378.		0
5	Enhanced Surface Passivation of Lead Sulfide Quantum Dots for Short-Wavelength Photodetectors. Chemistry of Materials, 2022, 34, 5433-5442.	3.2	13
6	21â€1: <i>Invited Paper:</i> Polarized Emission Thinâ€Film Lightâ€Emitting Diodes. Digest of Technical Papers SID International Symposium, 2022, 53, 228-230.	0.1	1
7	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	7.8	180
8	Balancing crop production and energy harvesting in organic solar-powered greenhouses. Cell Reports Physical Science, 2021, 2, 100381.	2.8	48
9	27â€4: Organic Lightâ€Emitting Diodes with Directional Polarized Light Emission. Digest of Technical Papers SID International Symposium, 2021, 52, 345-348.	0.1	0
10	High-temperature superfluorescence in methyl ammonium lead iodide. Nature Photonics, 2021, 15, 676-680.	15.6	30
11	Band Edge Control of Quasiâ€2D Metal Halide Perovskites for Blue Lightâ€Emitting Diodes with Enhanced Performance. Advanced Functional Materials, 2021, 31, 2103299.	7.8	28
12	Light extraction in tandem organic light emitting diodes. Applied Physics Letters, 2021, 119, .	1.5	6
13	Interconnecting layers for tandem organic solar cells. Materials Today Energy, 2021, 21, 100707.	2.5	12
14	Directional Polarized Light Emission from Thinâ€Film Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2006801.	11.1	35
15	Operational stability of perovskite light emitting diodes. JPhys Materials, 2020, 3, 012002.	1.8	95
16	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & Interfaces, 2020, 12, 48845-48853.	4.0	37
17	Investigating the active layer thickness dependence of non-fullerene organic solar cells based on PM7 derivatives. Journal of Materials Chemistry C, 2020, 8, 15459-15469.	2.7	16
18	Effects of polymer crystallinity on non-fullerene acceptor based organic solar cell photostability. Journal of Materials Chemistry C, 2020, 8, 16092-16099.	2.7	13

#	Article	IF	CITATIONS
19	12â€1: Invited Paper: Directional SPP Emission in OLEDs Using Diffractive Optical Elements. Digest of Technical Papers SID International Symposium, 2020, 51, 146-148.	0.1	1
20	Efficient Double- and Triple-Junction Nonfullerene Organic Photovoltaics and Design Guidelines for Optimal Cell Performance. ACS Energy Letters, 2020, 5, 3692-3701.	8.8	15
21	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and Highâ€Efficiency Semitransparent Organic Photovoltaics. Solar Rrl, 2020, 4, 2000328.	3.1	36
22	Direct Acoustic Imaging Using a Piezoelectric Organic Light-Emitting Diode. ACS Applied Materials & Interfaces, 2020, 12, 36409-36416.	4.0	9
23	Highâ€Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer. Advanced Energy Materials, 2020, 10, 2000823.	10.2	23
24	Mode Dispersion in Photonic Crystal Organic Light-Emitting Diodes. ACS Applied Electronic Materials, 2020, 2, 1759-1767.	2.0	14
25	Multi-mode Organic Light-Emitting Diode to Suppress the Viewing Angle Dependence. ACS Applied Materials & Interfaces, 2020, 12, 31667-31676.	4.0	3
26	Organic Solar Cells: Highâ€Performance Tandem Organic Solar Cells Using HSolar as the Interconnecting Layer (Adv. Energy Mater. 25/2020). Advanced Energy Materials, 2020, 10, 2070109.	10.2	0
27	Efficient Energy Funneling in Quasiâ€2D Perovskites: From Light Emission to Lasing. Advanced Materials, 2020, 32, e1906571.	11.1	134
28	Critical Role of Polymer Aggregation and Miscibility in Nonfullereneâ€Based Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1902430.	10.2	41
29	Recovering cavity effects in corrugated organic light emitting diodes. Optics Express, 2020, 28, 32214.	1.7	9
30	Long-Wavelength Lead Sulfide Quantum Dots Sensing up to 2600 nm for Short-Wavelength Infrared Photodetectors. ACS Applied Materials & Interfaces, 2019, 11, 44451-44457.	4.0	53
31	Realization of high-efficiency fluorescent organic light-emitting diodes with low driving voltage. Nature Communications, 2019, 10, 2305.	5.8	77
32	5â€1: Distinguished Paper: Eliminate Angular Color Shift in Top Emitting OLEDs through Cavity Design. Digest of Technical Papers SID International Symposium, 2019, 50, 38-41.	0.1	0
33	Eliminate angular color shift in topâ€emitting OLEDs through cavity design. Journal of the Society for Information Display, 2019, 27, 469-479.	0.8	13
34	Progress in air-processed perovskite solar cells: from crystallization to photovoltaic performance. Materials Horizons, 2019, 6, 1611-1624.	6.4	86
35	Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer. Chemistry of Materials, 2019, 31, 6833-6840.	3.2	50
36	Recent Advances in OLED Optical Design. Advanced Functional Materials, 2019, 29, 1808803.	7.8	350

#	Article	IF	CITATIONS
37	Acceptor Gradient Polymer Donors for Non-Fullerene Organic Solar Cells. Chemistry of Materials, 2019, 31, 9729-9741.	3.2	15
38	The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells. Advanced Energy Materials, 2019, 9, 1802293.	10.2	35
39	Panchromatic Allâ€Polymer Photodetector with Tunable Polarization Sensitivity. Advanced Optical Materials, 2019, 7, 1801346.	3.6	26
40	Manipulating Refractive Index in Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2018, 10, 9595-9601.	4.0	60
41	Every Atom Counts: Elucidating the Fundamental Impact of Structural Change in Conjugated Polymers for Organic Photovoltaics. Chemistry of Materials, 2018, 30, 2995-3009.	3.2	39
42	Sub-Band Gap Turn-On Near-Infrared-to-Visible Up-Conversion Device Enabled by an Organic–Inorganic Hybrid Perovskite Photovoltaic Absorber. ACS Applied Materials & Interfaces, 2018, 10, 15920-15925.	4.0	30
43	Semi-transparent vertical organic light-emitting transistors. Organic Electronics, 2018, 55, 126-132.	1.4	24
44	Langmuir–Blodgett Thin Films of Diketopyrrolopyrrole-Based Amphiphiles. ACS Applied Materials & Interfaces, 2018, 10, 11995-12004.	4.0	17
45	Vertical Organic–Inorganic Hybrid Perovskite Schottky Junction Transistors. Advanced Electronic Materials, 2018, 4, 1800039.	2.6	15
46	Impact of Nonfullerene Molecular Architecture on Charge Generation, Transport, and Morphology in PTB7â€Thâ€Based Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802702.	7.8	44
47	Randomly Distributed Conjugated Polymer Repeat Units for High-Efficiency Photovoltaic Materials with Enhanced Solubility and Processability. ACS Applied Materials & Interfaces, 2018, 10, 44583-44588.	4.0	18
48	Donor Conjugated Polymers with Polar Side Chain Groups: The Role of Dielectric Constant and Energetic Disorder on Photovoltaic Performance. Advanced Functional Materials, 2018, 28, 1803418.	7.8	42
49	Side-Chain Sequence Enabled Regioisomeric Acceptors for Conjugated Polymers. Macromolecules, 2018, 51, 8486-8492.	2.2	15
50	Flexoelectricity in a metal/ferroelectric/semiconductor heterostructure. AIP Advances, 2018, 8, .	0.6	6
51	Enhanced piezoelectricity of thin film hafnia-zirconia (HZO) by inorganic flexible substrates. Applied Physics Letters, 2018, 113, .	1.5	24
52	Increased Exciton Delocalization of Polymer upon Blending with Fullerene. Advanced Materials, 2018, 30, 1801392.	11.1	20
53	Using Ultralow Dosages of Electron Acceptor to Reveal the Early Stage Donor–Acceptor Electronic Interactions in Bulk Heterojunction Blends. Advanced Energy Materials, 2017, 7, 1602360.	10.2	64
54	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44

#	Article	IF	CITATIONS
55	Effect of Polymer–Fullerene Interaction on the Dielectric Properties of the Blend. Advanced Energy Materials, 2017, 7, 1601947.	10.2	51
56	Flexible Inorganic Ferroelectric Thin Films for Nonvolatile Memory Devices. Advanced Functional Materials, 2017, 27, 1700461.	7.8	111
57	Highly Efficient Organic Lightâ€Emitting Diode Using A Low Refractive Index Electron Transport Layer. Advanced Optical Materials, 2017, 5, 1700197.	3.6	44
58	Strong polymer molecular weight-dependent material interactions: impact on the formation of the polymer/fullerene bulk heterojunction morphology. Journal of Materials Chemistry A, 2017, 5, 13176-13188.	5.2	49
59	Ultraviolet-ozone surface modification for non-wetting hole transport materials based inverted planar perovskite solar cells with efficiency exceeding 18%. Journal of Power Sources, 2017, 360, 157-165.	4.0	106
60	Utilizing Forster resonance energy transfer to extend spectral response of PCDTBT:PCBM solar cells. Organic Electronics, 2017, 42, 87-92.	1.4	8
61	In Search of Deeper Blues: <i>Trans</i> -N-Heterocyclic Carbene Platinum Phenylacetylide as a Dopant for Phosphorescent OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 41111-41114.	4.0	41
62	Probing the Emission Zone Length in Organic Light Emitting Diodes via Photoluminescence and Electroluminescence Degradation Analysis. ACS Applied Materials & Interfaces, 2017, 9, 41421-41427.	4.0	14
63	18% High-Efficiency Air-Processed Perovskite Solar Cells Made in a Humid Atmosphere of 70% RH. Solar Rrl, 2017, 1, 1700097.	3.1	97
64	Transparent indium-tin oxide/indium-gallium-zinc oxide Schottky diodes formed by gradient oxygen doping. Applied Physics Letters, 2017, 111, 212103.	1.5	11
65	Fluorinated Thiophene Units Improve Photovoltaic Device Performance of Donor–Acceptor Copolymers. Chemistry of Materials, 2017, 29, 5990-6002.	3.2	57
66	OLED Optics. , 2017, , 363-383.		0
67	Inorganic UV–Visible–SWIR Broadband Photodetector Based on Monodisperse PbS Nanocrystals. Small, 2016, 12, 1328-1333.	5.2	64
68	Perovskite Solar Cells: Perovskite Solar Cells on Corrugated Substrates with Enhanced Efficiency (Small 46/2016). Small, 2016, 12, 6345-6345.	5.2	0
69	Evidence of Molecular Structure Dependent Charge Transfer between Isoindigo-Based Polymers and Fullerene. Chemistry of Materials, 2016, 28, 2433-2440.	3.2	32
70	Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons. Advanced Energy Materials, 2016, 6, 1301032.	10.2	16
71	Photodetectors: Inorganic UV–Visible–SWIR Broadband Photodetector Based on Monodisperse PbS Nanocrystals (Small 10/2016). Small, 2016, 12, 1246-1246.	5.2	10
72	Structure–Property Relationships Directing Transport and Charge Separation in Isoindigo Polymers. Macromolecules, 2016, 49, 4008-4022.	2.2	38

#	Article	IF	CITATIONS
73	Novel Patterning Method for Silver Nanowire Electrodes for Thermal-Evaporated Organic Light Emitting Diodes. ACS Applied Materials & Interfaces, 2016, 8, 9268-9274.	4.0	41
74	Organic Photovoltaics: Charge Photogeneration in Organic Photovoltaics: Role of Hot versus Cold Chargeâ€Transfer Excitons (Adv. Energy Mater. 1/2016). Advanced Energy Materials, 2016, 6, .	10.2	1
75	Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Applied Materials & Interfaces, 2016, 8, 10430-10435.	4.0	61
76	Perovskite Solar Cells on Corrugated Substrates with Enhanced Efficiency. Small, 2016, 12, 6346-6352.	5.2	15
77	Interface Effect on Efficiency Loss in Organic Light Emitting Diodes with Solution Processed Emitting Layers. Advanced Materials Interfaces, 2016, 3, 1600320.	1.9	10
78	Degradation study of organic light-emitting diodes with solution-processed small molecule phosphorescent emitting layers. Journal of Materials Chemistry C, 2016, 4, 8696-8703.	2.7	17
79	Formation of Perovskite Heterostructures by Ion Exchange. ACS Applied Materials & Interfaces, 2016, 8, 33273-33279.	4.0	56
80	Solution-processed copper oxide interlayers for broadband PbS quantum-dot photodiodes. Journal of Materials Chemistry C, 2016, 4, 11205-11211.	2.7	20
81	Photodegradation of Metal Oxide Interlayers in Polymer Solar Cells. Advanced Materials Interfaces, 2016, 3, 1600741.	1.9	8
82	Corrugated Organic Light Emitting Diodes Using Low <i>T</i> _g Electron Transporting Materials & Amp; Interfaces, 2016, 8, 16192-16199.	4.0	11
83	Efficiency Rollâ€Off in Blue Emitting Phosphorescent Organic Light Emitting Diodes with Carbazole Host Materials. Advanced Functional Materials, 2016, 26, 1463-1469.	7.8	67
84	High-gain infrared-to-visible upconversion light-emitting phototransistors. Nature Photonics, 2016, 10, 129-134.	15.6	96
85	Effect of Thermal Annealing on Charge Transfer States and Charge Trapping in PCDTBT:PC ₇₀ BM Solar Cells. Advanced Electronic Materials, 2015, 1, 1500167.	2.6	35
86	Origin of Subâ€Bandgap Electroluminescence in Organic Lightâ€Emitting Diodes. Small, 2015, 11, 5439-5443.	5.2	45
87	Bridging the Efficiency Gap: Fully Bridged Dinuclear Cu(I) omplexes for Singlet Harvesting in Highâ€Efficiency OLEDs. Advanced Materials, 2015, 27, 2538-2543.	11.1	140
88	Review of recent progress in multilayer solution-processed organic light-emitting diodes. Journal of Photonics for Energy, 2015, 5, 057611.	0.8	149
89	Effect of Polymer Side Chains on Charge Generation and Disorder in PBDTTPD Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 26999-27005.	4.0	27
90	High Efficiency Air-Processed Dithienogermole-Based Polymer Solar Cells. ACS Applied Materials & Interfaces, 2015, 7, 4826-4832.	4.0	34

#	Article	IF	CITATIONS
91	Passivation of Metal Oxide Surfaces for High-Performance Organic and Hybrid Optoelectronic Devices. Chemistry of Materials, 2015, 27, 2532-2539.	3.2	62
92	Corrugated Sapphire Substrates for Organic Light-Emitting Diode Light Extraction. ACS Applied Materials & Material	4.0	57
93	Unraveling the Gain Mechanism in High Performance Solutionâ€Processed PbS Infrared PIN Photodiodes. Advanced Functional Materials, 2015, 25, 1233-1238.	7.8	74
94	The role of photonics in energy. Journal of Photonics for Energy, 2015, 5, 050997.	0.8	18
95	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, 1401855.	10.2	337
96	Highâ€Efficiency Solutionâ€Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer. Advanced Energy Materials, 2015, 5, .	10.2	7
97	Special Section Guest Editorial:Solid-State Lighting: Photonics and Technologies. Journal of Photonics for Energy, 2015, 5, 057601.	0.8	1
98	Solution Processed Polymer Near-Infrared Photodiode With Electron and Hole Blockers. IEEE Transactions on Electron Devices, 2014, 61, 3852-3857.	1.6	11
99	5.3: Highly Efficient Phosphorescent OLEDs Fabricated on Corrugated Highâ€Indexâ€Refractive Substrates. Digest of Technical Papers SID International Symposium, 2014, 45, 40-41.	0.1	8
100	All Solutionâ€Processed Inorganic/Organic Hybrid Permeable Metalâ€Base Transistor. Small, 2014, 10, 3650-3654.	5.2	5
101	Effect of Nanoâ€Porosity on High Gain Permeable Metalâ€Base Transistors. Advanced Functional Materials, 2014, 24, 6056-6065.	7.8	17
102	OLED Optics. , 2014, , 1-17.		0
103	Intrinsic delay of permeable base transistor. Journal of Applied Physics, 2014, 116, .	1.1	13
104	Phosphorescent organic light emitting diodes with a cross-linkable hole transporting material. Organic Electronics, 2014, 15, 1702-1706.	1.4	21
105	Air-Stable, Solution-Processed Oxide p–n Heterojunction Ultraviolet Photodetector. ACS Applied Materials & Interfaces, 2014, 6, 1370-1374.	4.0	83
106	Phosphorescent dye-doped hole transporting layer for organic light-emitting diodes. Organic Electronics, 2014, 15, 2381-2386.	1.4	11
107	Stable solution processed hole injection material for organic light-emitting diodes. Organic Electronics, 2014, 15, 2513-2517.	1.4	20
108	Dielectric Effect on the Photovoltage Loss in Organic Photovoltaic Cells. Advanced Materials, 2014, 26, 6125-6131.	11.1	95

#	Article	IF	CITATIONS
109	Batchâ€ŧoâ€Batch Variation of Polymeric Photovoltaic Materials: its Origin and Impacts on Charge Carrier Transport and Device Performances. Advanced Energy Materials, 2014, 4, 1400768.	10.2	72
110	Nickel Oxide Hole Injection/Transport Layers for Efficient Solution-Processed Organic Light-Emitting Diodes. Chemistry of Materials, 2014, 26, 4528-4534.	3.2	182
111	Lowâ€Noise Multispectral Photodetectors Made from All Solutionâ€Processed Inorganic Semiconductors. Advanced Functional Materials, 2014, 24, 7205-7210.	7.8	90
112	Multi-spectral imaging with infrared sensitive organic light emitting diode. Scientific Reports, 2014, 4, 5946.	1.6	59
113	Investigation of the Role of the Acceptor Molecule in Bulk Heterojunction Photovoltaic Cells Using Impedance Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 13798-13804.	1.5	13
114	Defect-Induced Loss Mechanisms in Polymer–Inorganic Planar Heterojunction Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 7215-7218.	4.0	51
115	Charge transport study of semiconducting polymers and their bulk heterojunction blends by capacitance measurements. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 649-658.	2.4	14
116	Hole injection polymer effect on degradation of organic light-emitting diodes. Organic Electronics, 2013, 14, 2518-2522.	1.4	26
117	Properties of interlayer for organic photovoltaics. Materials Today, 2013, 16, 424-432.	8.3	168
118	Direct Fabrication of Organic Lightâ€Emitting Diodes on Buckled Substrates for Light Extraction. Advanced Optical Materials, 2013, 1, 404-408.	3.6	22
119	Energy Level Alignment and Subâ€Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells. Advanced Materials, 2013, 25, 2434-2439.	11.1	35
120	Solutionâ€Processed Nickel Oxide Hole Transport Layers in High Efficiency Polymer Photovoltaic Cells. Advanced Functional Materials, 2013, 23, 2993-3001.	7.8	461
121	A systematic study on efficiency enhancements in phosphorescent green, red and blue microcavity organic light emitting devices. Light: Science and Applications, 2013, 2, e74-e74.	7.7	259
122	Interlayers for Efficient Electron Injection in Polymer LEDs. Journal of Display Technology, 2013, 9, 469-475.	1.3	3
123	Loss Mechanisms in Thickâ€Film Lowâ€Bandgap Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 909-916.	10.2	52
124	Guest Editorial Recent Advances in Solid State Lighting. Journal of Display Technology, 2013, 9, 187-189.	1.3	0
125	Energy Level Alignment and Subâ€Bandgap Charge Generation in Polymer:Fullerene Bulk Heterojunction Solar Cells (Adv. Mater. 17/2013). Advanced Materials, 2013, 25, 2433-2433.	11.1	1
126	Realization of high efficiency inverted polymer photovoltaic cells for roll-to-roll application. , 2012, ,		0

#	Article	IF	CITATIONS
127	P-110: Light extraction of Phosphorescent OLEDs by Defective Hexagonal-Close-Packed Array. Digest of Technical Papers SID International Symposium, 2012, 43, 1474-1476.	0.1	0
128	Inverted Polymer Solar Cells. IEEE Photonics Journal, 2012, 4, 625-628.	1.0	6
129	Interplay of cleaning and de-doping in oxygen plasma treated high work function indium tin oxide (ITO). Organic Electronics, 2012, 13, 2028-2034.	1.4	32
130	Aesthetically Pleasing Conjugated Polymer:Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing. ACS Applied Materials & Interfaces, 2012, 4, 1847-1853.	4.0	50
131	Metal oxides for interface engineering in polymer solar cells. Journal of Materials Chemistry, 2012, 22, 24202.	6.7	331
132	Light Extraction: Light Extraction of Organic Light Emitting Diodes by Defective Hexagonal-Close-Packed Array (Adv. Funct. Mater. 16/2012). Advanced Functional Materials, 2012, 22, 3453-3453.	7.8	2
133	Solution processed multilayer cadmium-free blue/violet emitting quantum dots light emitting diodes. Applied Physics Letters, 2012, 101, 053303.	1.5	39
134	High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photonics, 2012, 6, 115-120.	15.6	903
135	An isoindigo and dithieno[3,2-b:2′,3′-d]silole copolymer for polymer solar cells. Polymer Chemistry, 2012, 3, 89-92.	1.9	84
136	High-Efficiency Inverted Polymer Solar Cells with Double Interlayer. ACS Applied Materials & Interfaces, 2012, 4, 866-870.	4.0	63
137	Improved Performance of Molecular Bulkâ€Heterojunction Photovoltaic Cells through Predictable Selection of Solvent Additives. Advanced Functional Materials, 2012, 22, 4801-4813.	7.8	149
138	Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer. Advanced Functional Materials, 2012, 22, 3261-3266.	7.8	73
139	Light Extraction of Organic Light Emitting Diodes by Defective Hexagonalâ€Closeâ€Packed Array. Advanced Functional Materials, 2012, 22, 3454-3459.	7.8	160
140	Inverted Polymer Solar Cells with Reduced Interface Recombination. Advanced Energy Materials, 2012, 2, 1333-1337.	10.2	210
141	Synthetic Principles Directing Charge Transport in Low-Band-Gap Dithienosilole–Benzothiadiazole Copolymers. Journal of the American Chemical Society, 2012, 134, 8944-8957.	6.6	124
142	Effect of vertical morphology on the performance of silole-containing low-bandgap inverted polymer solar cells. Solar Energy Materials and Solar Cells, 2012, 97, 97-101.	3.0	23
143	Charge injection and transport studies of poly(2,7-carbazole) copolymer PCDTBT and their relationship to solar cell performance. Organic Electronics, 2012, 13, 850-855.	1.4	41
144	n-Type Conjugated Polyisoindigos. Macromolecules, 2011, 44, 6303-6310.	2.2	156

#	Article	IF	CITATIONS
145	PbSe Nanocrystal-Based Infrared-to-Visible Up-Conversion Device. Nano Letters, 2011, 11, 2109-2113.	4.5	69
146	Reorientation of the High Mobility Plane in Pentacene-Based Carbon Nanotube Enabled Vertical Field Effect Transistors. ACS Nano, 2011, 5, 291-298.	7.3	28
147	Dithienogermole As a Fused Electron Donor in Bulk Heterojunction Solar Cells. Journal of the American Chemical Society, 2011, 133, 10062-10065.	6.6	693
148	Polydimethylsiloxane as a Macromolecular Additive for Enhanced Performance of Molecular Bulk Heterojunction Organic Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 1210-1215.	4.0	108
149	Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science, 2011, 332, 570-573.	6.0	466
150	Colloidal Semiconductor Nanocrystal-Enabled Organic/Inorganic Hybrid Light Emitting Devices. , 2011, , 183-214.		5
151	Organic and Inorganic Blocking Layers for Solutionâ€Processed Colloidal PbSe Nanocrystal Infrared Photodetectors. Advanced Functional Materials, 2011, 21, 167-171.	7.8	88
152	Downâ€Conversion White Organic Lightâ€Emitting Diodes Using Microcavity Structure. Advanced Energy Materials, 2011, 1, 174-178.	10.2	39
153	Photoâ€Carrier Recombination in Polymer Solar Cells Based on P3HT and Siloleâ€Based Copolymer. Advanced Energy Materials, 2011, 1, 963-969.	10.2	52
154	DOWN-CONVERSION WHITE OLEDS: Down-Conversion White Organic Light-Emitting Diodes Using Microcavity Structure (Adv. Energy Mater. 2/2011). Advanced Energy Materials, 2011, 1, 173-173.	10.2	0
155	Understanding the performance and loss-mechanisms in donor–acceptor polymer based solar cells: Photocurrent generation, charge separation and carrier transport. Solar Energy Materials and Solar Cells, 2011, 95, 2502-2510.	3.0	16
156	Guest Editorial: Organic Light-Emitting Materials and Devices. Journal of Photonics for Energy, 2011, 1, 011099.	0.8	0
157	Photoemission Spectroscopy Characterization of Attempts to Deposit MoO ₂ Thin Film. International Journal of Photoenergy, 2011, 2011, 1-6.	1.4	9
158	High Efficiency White Organic Light-Emitting Devices. , 2011, , .		0
159	High-Efficiency Blue Emitting Phosphorescent OLEDs. IEEE Transactions on Electron Devices, 2010, 57, 101-107.	1.6	33
160	Color Tunable π-Conjugated Polymers for Solar-Cell Applications: Engineering of Bandgap, Interface, and Charge Transport Properties. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1792-1800.	1.9	5
161	Variations in Hole Injection due to Fast and Slow Interfacial Traps in Polymer Lightâ€Emitting Diodes with Interlayers. Advanced Functional Materials, 2010, 20, 119-130.	7.8	12
162	Degradation Mechanisms in Smallâ€Molecule and Polymer Organic Lightâ€Emitting Diodes. Advanced Materials, 2010, 22, 3762-3777.	11.1	441

#	Article	IF	CITATIONS
163	Organic Infrared Upconversion Device. Advanced Materials, 2010, 22, 2260-2263.	11.1	99
164	Electroluminescence from light-emitting polymer/ZnO nanoparticle heterojunctions at sub-bandgap voltages. Nano Today, 2010, 5, 384-389.	6.2	210
165	Efficient solution-processed hybrid polymer–nanocrystal near infrared light-emitting devices. Organic Electronics, 2010, 11, 23-28.	1.4	44
166	Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance. Organic Electronics, 2010, 11, 955-958.	1.4	25
167	Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor. Applied Physics Letters, 2010, 96, 073304.	1.5	114
168	MoO 3 /poly(9,9-dioctylfluorene-co-N-[4-(3-methylpropyl)]-diphenylamine) double-interlayer effect on polymer solar cells. Applied Physics Letters, 2010, 96, .	1.5	63
169	Effect of Solvent Treatment on Solution-Processed Colloidal PbSe Nanocrystal Infrared Photodetectors. Chemistry of Materials, 2010, 22, 3496-3501.	3.2	73
170	Green Dioxythiophene-Benzothiadiazole Donorâ^'Acceptor Copolymers for Photovoltaic Device Applications. Chemistry of Materials, 2010, 22, 2093-2106.	3.2	73
171	High efficiency and low roll-off blue phosphorescent organic light-emitting devices using mixed host architecture. Applied Physics Letters, 2010, 97, .	1.5	112
172	Energy level evolution of air and oxygen exposed molybdenum trioxide films. Applied Physics Letters, 2010, 96, .	1.5	189
173	White phosphorescent organic light-emitting devices with dual triple-doped emissive layers. Applied Physics Letters, 2009, 94, 153303.	1.5	96
174	An ambipolar phosphine oxide-based host for high power efficiency blue phosphorescent organic light emitting devices. Applied Physics Letters, 2009, 94, 223304.	1.5	61
175	30.1: <i>Invited Paper</i> : Charge Balance in Blue Phosphorescent Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2009, 40, 410-412.	0.1	3
176	Guest Editorial Special Issue on Transparent Electronics. Journal of Display Technology, 2009, 5, 429-430.	1.3	2
177	Highly Efficient Hole Injection Using Polymeric Anode Materials for Smallâ€Molecule Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2009, 19, 491-496.	7.8	43
178	Effect of electron injection and transport materials on efficiency of deep-blue phosphorescent organic light-emitting devices. Organic Electronics, 2009, 10, 686-691.	1.4	65
179	SnPc:C60 bulk heterojunction organic photovoltaic cells with MoO3 interlayer. Solar Energy Materials and Solar Cells, 2009, 93, 1452-1456.	3.0	73
180	Aluminum phthalocyanine chloride/C60 organic photovoltaic cells with high open-circuit voltages. Solar Energy Materials and Solar Cells, 2009, 93, 1688-1691.	3.0	67

#	Article	IF	CITATIONS
181	Electronic structure and interactions of LiF doped tris (8-hydroxyquinoline) aluminum (Alq). Chemical Physics Letters, 2009, 473, 92-95.	1.2	7
182	The effect of molybdenum oxide interlayer on organic photovoltaic cells. Applied Physics Letters, 2009, 95, .	1.5	190
183	Effect of the Charge Balance on High-Efficiency Blue-Phosphorescent Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2009, 1, 1169-1172.	4.0	93
184	Efficient Green Solar Cells via a Chemically Polymerizable Donorâ^'Acceptor Heterocyclic Pentamer. ACS Applied Materials & Interfaces, 2009, 1, 1154-1158.	4.0	23
185	High efficiency deep-blue and white phosphorescent OLEDs. , 2009, , .		5
186	The effect of molybdenum oxide interlayer on organic photovoltaic cells. , 2009, , .		1
187	The effect of molybdenum trioxide inter-layer between indium tin oxide (ITO) and organic semiconductor on the energy level alignment. Materials Research Society Symposia Proceedings, 2009, 1212, 1.	0.1	2
188	High efficiency blue phosphorescent organic light emitting diodes. Proceedings of SPIE, 2009, , .	0.8	2
189	LiF as an nâ€Dopant in Tris(8â€hydroxyquinoline) Aluminum Thin Films. Advanced Materials, 2008, 20, 1456-1461.	11.1	72
190	Carbonâ€Nanotubeâ€Enabled Vertical Field Effect and Lightâ€Emitting Transistors. Advanced Materials, 2008, 20, 3605-3609.	11.1	107
191	Effects of solution-processed polymer interlayers on hole injection and device performance of polymer light-emitting diodes. Organic Electronics, 2008, 9, 183-190.	1.4	19
192	High efficiency blue phosphorescent organic light-emitting device. Applied Physics Letters, 2008, 93, 143307.	1.5	210
193	Effects of triplet energies and transporting properties of carrier transporting materials on blue phosphorescent organic light emitting devices. Applied Physics Letters, 2008, 93, .	1.5	215
194	Efficient deep-blue phosphorescent organic light-emitting device with improved electron and exciton confinement. Applied Physics Letters, 2008, 92, .	1.5	138
195	Organic Light-Emitting Devices for Solid-State Lighting. MRS Bulletin, 2008, 33, 663-669.	1.7	381
196	Cavity effects on light extraction in organic light emitting devices. Applied Physics Letters, 2008, 92, .	1.5	40
197	Organic/inorganic nanocomposites for high-dielectric-constant materials. Applied Physics Letters, 2008, 93, 123305.	1.5	12
198	Low voltage and very high efficiency deep-blue phosphorescent organic light-emitting devices. Applied Physics Letters, 2008, 93, 133309.	1.5	66

#	Article	IF	CITATIONS
199	Highly efficient, charge balanced blue phosphorescent OLEDs employing wide band gap host with p-i-n architecture. , 2008, , .		0
200	Mechanism of LiF interlayer for electron injection. Proceedings of SPIE, 2008, , .	0.8	2
201	Effects of triplet energy confinement by charge transporting layers on blue phosphorescent organic light emitting diodes. Proceedings of SPIE, 2008, , .	0.8	2
202	Triplet energy confinement effect in blue phosphorescent organic light emitting devices. , 2008, , .		0
203	High quantum efficiency polymer photoconductors using interdigitated electrodes. Applied Physics Letters, 2007, 91, .	1.5	12
204	Tuning the properties of polythienothiophene conductive polymers for hole injection layer application. Proceedings of SPIE, 2007, , .	0.8	2
205	Influence of cavity effects on light extraction efficiency in organic light emitting devices. , 2007, , .		Ο
206	Enhanced electron injection and performance in organic light emitting devices by LiF doping. , 2007, , .		1
207	Light Extraction From Solution-Based Processable Electrophosphorescent Organic Light-Emitting Diodes. Journal of Display Technology, 2007, 3, 200-210.	1.3	9
208	Recent progress in solution processable organic light emitting devices. Journal of Applied Physics, 2007, 102, .	1.1	187
209	Enhanced electron injection and transport with LiF doping. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	Ο
210	Highly efficient white organic light-emitting diode. Applied Physics Letters, 2006, 88, 113506.	1.5	191
211	Highly efficient solution processed blue organic electrophosphorescence with 14lmâ^•W luminous efficacy. Applied Physics Letters, 2006, 88, 243512.	1.5	103
212	Influence of charge balance and microcavity effects on resultant efficiency of organic-light emitting devices. Organic Electronics, 2006, 7, 313-318.	1.4	30
213	Interface Modification to Improve Hole-Injection Properties in Organic Electronic Devices. Advanced Functional Materials, 2006, 16, 1075-1080.	7.8	115
214	Altering the interfacial morphology of polymer light-emitting diodes using polymer interlayers: effect on hole injection and device performance. , 2006, 6333, 317.		1
215	Bipolar carrier transport in a conjugated polymer by complex admittance spectroscopy. Journal of Applied Physics, 2006, 99, 033707.	1.1	68
216	General method to evaluate substrate surface modification techniques for light extraction enhancement of organic light emitting diodes. Journal of Applied Physics, 2006, 100, 054702.	1.1	32

#	Article	lF	CITATIONS
217	Highly efficient organic electroluminescent device with modified cathode. Applied Physics Letters, 2006, 88, 203502.	1.5	19
218	67.3: Trilayer Polymer OLED Devices for Passive Matrix Applications. Digest of Technical Papers SID International Symposium, 2005, 36, 1871.	0.1	5
219	High-efficiency solution processed electrophosphorescent organic light emitting diodes based on a simple bi-layer device architecture. , 2005, 5937, 56.		2
220	The effect of interfacial layer on the performance of organic light-emitting diodes. Applied Physics Letters, 2005, 87, 113503.	1.5	143
221	Bipolar charge transport, injection, and trapping studies in a model green-emitting polyfluorene copolymer. Journal of Applied Physics, 2005, 98, 014501.	1.1	70
222	A study of the subdiffusive fractional Fokker–Planck equation of bistable systems. Physica A: Statistical Mechanics and Its Applications, 2004, 331, 378-390.	1.2	26
223	Charge injection and transport in a green-emitting polyfluorene. , 2004, , .		4
224	Coherent stochastic resonance in a sextic double-well potential. Physica A: Statistical Mechanics and Its Applications, 2002, 303, 79-90.	1.2	9
225	Immunohistochemical localization of fibroblast growth factors FGF-1 and FGF-2, and receptors FGFR2 and FGFR3 in the epithelium of human odontogenic cysts and tumors. Journal of Oral Pathology and Medicine, 2001, 30, 428-433.	1.4	32
226	Physics of organic alloy light-emitting diodes. , 2000, , .		0
227	A study of the Fokker–Planck equation of bistable systems by the method of state-dependent diagonalization. Physica A: Statistical Mechanics and Its Applications, 2000, 277, 335-348.	1.2	14
228	Bipolar transport organic light emitting diodes with enhanced reliability by LiF doping. Applied Physics Letters, 2000, 76, 958-960.	1.5	40
229	Efficient and durable organic alloys for electroluminescent displays. Journal Physics D: Applied Physics, 2000, 33, 760-763.	1.3	30
230	Organic light-emitting diodes with a bipolar transport layer. Applied Physics Letters, 1999, 75, 172-174.	1.5	151
231	Reliability comparison of BTEL and bilayer organic LEDs. Synthetic Metals, 1999, 107, 53-56.	2.1	5
232	Carrier transport mechanisms in organic electroluminescent devices. , 1998, 3281, 248.		4
233	<title>Carrier transport in organic light-emitting diodes</title> . , 1998, 3476, 196.		Ο