
Elchin E Jafarov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372264/publications.pdf Version: 2024-02-01

FICHIN F LAFAROV

#	Article	IF	CITATIONS
1	The importance of freeze–thaw cycles for lateral tracer transport in ice-wedge polygons. Cryosphere, 2022, 16, 851-862.	1.5	1
2	Active layer thickness as a function of soil water content. Environmental Research Letters, 2021, 16, 055028.	2.2	35
3	New insights into the drainage of inundated ice-wedge polygons using fundamental hydrologic principles. Cryosphere, 2021, 15, 4005-4029.	1.5	3
4	Application of Tikhonov regularization to reconstruct past climate record from borehole temperature. Inverse Problems in Science and Engineering, 2021, 29, 3167-3189.	1.2	0
5	Potential impacts of mercury released from thawing permafrost. Nature Communications, 2020, 11, 4650.	5.8	77
6	A Model of Ice Wedge Polygon Drainage in Changing Arctic Terrain. Water (Switzerland), 2020, 12, 3376.	1.2	3
7	Sensitivity evaluation of the Kudryavtsev permafrost model. Science of the Total Environment, 2020, 720, 137538.	3.9	22
8	Soil moisture and hydrology projections of the permafrost region – a model intercomparison. Cryosphere, 2020, 14, 445-459.	1.5	85
9	Estimation of subsurface porosities and thermal conductivities of polygonal tundra by coupled inversion of electrical resistivity, temperature, and moisture content data. Cryosphere, 2020, 14, 77-91.	1.5	7
10	Divergence in land surface modeling: linking spread to structure. Environmental Research Communications, 2019, 1, 111004.	0.9	13
11	Climate policy implications of nonlinear decline of Arctic land permafrost and other cryosphere elements. Nature Communications, 2019, 10, 1900.	5.8	108
12	Large loss of CO2 in winter observed across the northern permafrost region. Nature Climate Change, 2019, 9, 852-857.	8.1	225
13	Permafrost Stores a Globally Significant Amount of Mercury. Geophysical Research Letters, 2018, 45, 1463-1471.	1.5	245
14	Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3882-3887.	3.3	296
15	Modeling the role of preferential snow accumulation in through talik development and hillslope groundwater flow in a transitional permafrost landscape. Environmental Research Letters, 2018, 13, 105006.	2.2	90
16	A Modeling Toolbox for Permafrost Landscapes. Eos, 2018, 99, .	0.1	9
17	A synthesis dataset of permafrost-affected soil thermal conditions for Alaska, USA. Earth System Science Data, 2018, 10, 2311-2328.	3.7	18
18	Historical and projected trends in landscape drivers affecting carbon dynamics in Alaska. Ecological Applications, 2017, 27, 1383-1402.	1.8	33

ELCHIN E JAFAROV

#	Article	IF	CITATIONS
19	Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus. Geophysical Research Letters, 2017, 44, 9029-9038.	1.5	36
20	Estimating active layer thickness and volumetric water content from ground penetrating radar measurements in Barrow, Alaska. Geoscience Data Journal, 2017, 4, 72-79.	1.8	14
21	Reproducible, componentâ€based modeling with TopoFlow, a spatial hydrologic modeling toolkit. Earth and Space Science, 2017, 4, 377-394.	1.1	5
22	The importance of a surface organic layer in simulating permafrost thermal and carbon dynamics. Cryosphere, 2016, 10, 465-475.	1.5	29
23	A parameterization of respiration in frozen soils based on substrate availability. Biogeosciences, 2016, 13, 1991-2001.	1.3	29
24	Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics, 2016, 81, H9-H19.	1.4	14
25	Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles, 2016, 30, 1015-1037.	1.9	116
26	Biomass offsets little or none of permafrost carbon release from soils, streams, and wildfire: an expert assessment. Environmental Research Letters, 2016, 11, 034014.	2.2	199
27	Ground-penetrating radar-derived measurements of active-layer thickness on the landscape scale with sparse calibration at Toolik and Happy Valley, Alaska. Geophysics, 2016, 81, H1-H11.	1.4	3
28	Disentangling climatic and anthropogenic controls on global terrestrial evapotranspiration trends. Environmental Research Letters, 2015, 10, 094008.	2.2	119
29	Remotely Sensed Active Layer Thickness (ReSALT) at Barrow, Alaska Using Interferometric Synthetic Aperture Radar. Remote Sensing, 2015, 7, 3735-3759.	1.8	59
30	A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140423.	1.6	149
31	InSAR detects increase in surface subsidence caused by an Arctic tundra fire. Geophysical Research Letters, 2014, 41, 3906-3913.	1.5	64
32	The effect of snow: How to better model ground surface temperatures. Cold Regions Science and Technology, 2014, 102, 63-77.	1.6	25
33	The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate. Environmental Research Letters, 2013, 8, 035030.	2.2	109
34	Numerical modeling of permafrost dynamics in Alaska using a high spatial resolution dataset. Cryosphere, 2012, 6, 613-624.	1.5	167