Masaaki Yamamoto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6372036/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Stereotactic Radiosurgery Results for Patients with 5–10 versus 11–20 Brain Metastases: A Retrospective Cohort Study Combining 2 Databases Totaling 2319 Patients. World Neurosurgery, 2021, 146, e479-e491.	1.3	12
2	A graded prognostic model for patients surviving 3 years or more (GPM ≥ 3Ys) after stereotactic radiosurgery for brain metastasis. Radiotherapy and Oncology, 2021, 156, 29-35.	0.6	4
3	Stereotactic Radiosurgery Results for Patients With Brain Metastases From Gastrointestinal Cancer: A Retrospective Cohort Study of 802 Patients With GI-GPA Validity Test. Advances in Radiation Oncology, 2021, 6, 100721.	1.2	3
4	Stereotactic Radiosurgery Results for Brain Metastasis Patients with Renal Cancer: A Validity Study of Renal Graded Prognostic Assessment and Proposal of a New Grading Index (JLGK2101 Study). Clinical and Translational Radiation Oncology, 2021, 32, 69-75.	1.7	1
5	A Cohort Study of Stereotactic Radiosurgery Results for Patients With 5 to 15 Versus 2 to 4 Brain Metastatic Tumors. Advances in Radiation Oncology, 2020, 5, 358-368.	1.2	14
6	Stereotactic radiosurgery for brain metastases: A retrospective cohort study comparing treatment results between two lung cancer patient age groups, 75 years or older vs 65–74 years. Lung Cancer, 2020, 149, 103-112.	2.0	4
7	Impact of breast cancer subtype on clinical outcomes after Gamma Knife radiosurgery for brain metastases from breast cancer: a multi-institutional retrospective study (JLGK1702). Breast Cancer Research and Treatment, 2020, 184, 149-159.	2.5	6
8	Evaluation of First-line Radiosurgery vs Whole-Brain Radiotherapy for Small Cell Lung Cancer Brain Metastases. JAMA Oncology, 2020, 6, 1028.	7.1	122
9	Three-institution study on applicability of initial brain metastasis velocity for breast cancer brain metastasis patients undergoing stereotactic radiosurgery. Journal of Neuro-Oncology, 2020, 147, 177-184.	2.9	13
10	Local tumor progression treated with Gamma Knife radiosurgery: differences between patients with 2–4 versus 5–10 brain metastases based on an update of a multi-institutional prospective observational study (JLGK0901). Journal of Neurosurgery, 2020, 132, 1480-1489.	1.6	25
11	Stereotactic radiosurgery in elderly patients with brain metastases: comparison with non-elderly patients using database of a multi-institutional prospective observational study (JLGK0901-Elderly). Journal of Neuro-Oncology, 2019, 144, 393-402.	2.9	14
12	The impact of EGFR-TKI use on clinical outcomes of lung adenocarcinoma patients with brain metastases after Gamma Knife radiosurgery: a propensity score-matched analysis based on extended JLGK0901 dataset (JLGK0901-EGFR-TKI). Journal of Neuro-Oncology, 2019, 145, 151-157.	2.9	16
13	Long-term follow-up results of stereotactic radiosurgery for vestibular schwannomas larger than 8Âcc. Acta Neurochirurgica, 2019, 161, 1457-1465.	1.7	16
14	Applicability and limitations of a recently-proposed prognostic grading metric, initial brain metastasis velocity, for brain metastasis patients undergoing stereotactic radiosurgery. Journal of Neuro-Oncology, 2019, 143, 613-621.	2.9	18
15	Stereotactic Radiosurgery for Patients with 10 or More Brain Metastases. Progress in Neurological Surgery, 2019, 34, 110-124.	1.3	18
16	<p>Gamma Knife Radiosurgery For Brain Vascular Malformations: Current Evidence And Future Tasks</p> . Therapeutics and Clinical Risk Management, 2019, Volume 15, 1351-1367.	2.0	15
17	Comparison of treatment results between 3- and 2-stage Gamma Knife radiosurgery for large brain metastases: a retrospective multi-institutional study. Journal of Neurosurgery, 2019, 131, 227-237.	1.6	37
18	Prognostic Importance of Cumulative Intracranial Tumor Volume in Patients with Gastrointestinal Brain Metastasis Treated with Stereotactic Radiosurgery. World Neurosurgery, 2019, 121, e747-e754.	1.3	16

#	Article	IF	CITATIONS
19	The NASSAU (New ASSessment of cerebral Arteriovenous Malformations yet Unruptured) Analysis: Are the Results From The ARUBA Trial Also Applicable to Unruptured Arteriovenous Malformations Deemed Suitable for Gamma Knife Surgery?. Neurosurgery, 2019, 85, E118-E124.	1.1	29
20	Validity of a Recently Proposed Prognostic Grading Index, Brain Metastasis Velocity, for Patients With Brain Metastasis Undergoing Multiple Radiosurgical Procedures. International Journal of Radiation Oncology Biology Physics, 2019, 103, 631-637.	0.8	29
21	Superior Prognostic Value of Cumulative Intracranial Tumor Volume Relative to Largest Intracranial Tumor Volume for Stereotactic Radiosurgery-Treated Brain Metastasis Patients. Neurosurgery, 2018, 82, 473-480.	1.1	23
22	Prognostic grading system specifically for elderly patients with brain metastases after stereotactic radiosurgery: a 2-institution study. Journal of Neurosurgery, 2018, 129, 95-102.	1.6	8
23	Complications after stereotactic radiosurgery for brain metastases: Incidences, correlating factors, treatments and outcomes. Radiotherapy and Oncology, 2018, 129, 364-369.	0.6	13
24	Gamma Knife Radiosurgery for Metastatic Brain Tumors from Malignant Melanomas: A Japanese Multi-Institutional Cooperative and Retrospective Cohort Study (JLGK1501). Stereotactic and Functional Neurosurgery, 2018, 96, 162-171.	1.5	14
25	Modern management for brain metastasis patients using stereotactic radiosurgery: literature review and the authors' gamma knife treatment experiences. Cancer Management and Research, 2018, Volume 10, 1889-1899.	1.9	30
26	Clinical significance of conformity index and gradient index in patients undergoing stereotactic radiosurgery for a single metastatic tumor. Journal of Neurosurgery, 2018, 129, 103-110.	1.6	18
27	Multiinstitutional prospective observational study of stereotactic radiosurgery for patients with multiple brain metastases from non–small cell lung cancer (JLGK0901 study–NSCLC). Journal of Neurosurgery, 2018, 129, 86-94.	1.6	27
28	Three-stage Gamma Knife treatment for metastatic brain tumors larger than 10 cm3: a 2-institute study including re-analyses of earlier results using competing risk analysis. Journal of Neurosurgery, 2018, 129, 77-85.	1.6	13
29	Multiple Brain Metastases. , 2018, , 449-469.		Ο
30	Survival Patterns of 5750 Stereotactic Radiosurgery–Treated Patients with Brain Metastasis as a Function of the Number of Lesions. World Neurosurgery, 2017, 107, 944-951.e1.	1.3	30
31	Improving the Prognostic Value of Disease-Specific Graded Prognostic Assessment Model for Renal Cell Carcinoma by Incorporation of Cumulative Intracranial Tumor Volume. World Neurosurgery, 2017, 108, 151-156.	1.3	24
32	A Multi-institutional Prospective Observational Study of Stereotactic Radiosurgery for Patients With Multiple Brain Metastases (JLGK0901 Study Update): Irradiation-related Complications and Long-term Maintenance of Mini-Mental State Examination Scores. International Journal of Radiation Oncology Biology Physics, 2017, 99, 31-40.	0.8	183
33	Cumulative Intracranial Tumor Volume (CITV) Enhances the Prognostic Value of the Lung-Specific Graded Prognostic Assessment (GPA) Model. Neurosurgery, 2016, 79, 246-252.	1.1	22
34	Follow-up results of brain metastasis patients undergoing repeat Gamma Knife radiosurgery. Journal of Neurosurgery, 2016, 125, 2-10.	1.6	29
35	Stereotactic radiosurgery for vestibular schwannomas: average 10-year follow-up results focusing on long-term hearing preservation. Journal of Neurosurgery, 2016, 125, 64-72.	1.6	79
36	A case-matched study of stereotactic radiosurgery for patients with brain metastases: comparing treatment results for those with versus without neurological symptoms. Journal of Neuro-Oncology, 2016, 130, 581-590.	2.9	4

Masaaki Yamamoto

#	Article	IF	CITATIONS
37	Does Modern Management of Malignant Extracranial Disease Prolong Survival in Patients with ≥3 Brain Metastases?. World Neurosurgery, 2016, 92, 279-283.	1.3	5
38	Management patterns of patients with cerebral metastases who underwent multiple stereotactic radiosurgeries. Journal of Neuro-Oncology, 2016, 128, 119-128.	2.9	13
39	Gamma Knife radiosurgery for brain metastases from pulmonary large cell neuroendocrine carcinoma: a Japanese multi-institutional cooperative study (JLGK1401). Journal of Neurosurgery, 2016, 125, 11-17.	1.6	14
40	Stereotactic radiosurgery for patients with multiple brain metastases: a case-matched study comparing treatment results for patients with 2–9 versus 10 or more tumors. Journal of Neurosurgery, 2014, 121, 16-25.	1.6	119
41	Validity of Prognostic Grading Indices for Brain Metastasis Patients Undergoing Repeat Radiosurgery. World Neurosurgery, 2014, 82, 1242-1249.	1.3	21
42	Stereotactic radiosurgery for brain metastases: a case-matched study comparing treatment results for patients 80 years of age or older versus patients 65–79 years of age. Journal of Neurosurgery, 2014, 121, 1148-1157.	1.6	25
43	Clinical Benefit of 11C Methionine PET Imaging as a Planning Modality for Radiosurgery of Previously Irradiated Recurrent Brain Metastases. Clinical Nuclear Medicine, 2014, 39, 939-943.	1.3	24
44	Stereotactic radiosurgery for patients with multiple brain metastases (JLGK0901): a multi-institutional prospective observational study. Lancet Oncology, The, 2014, 15, 387-395.	10.7	1,112
45	Stereotactic radiosurgery for patients with brain metastases – Authors' reply. Lancet Oncology, The, 2014, 15, e248.	10.7	10
46	Long-Term Side Effects of Radiosurgery for Arteriovenous Malformations. Progress in Neurological Surgery, 2013, 27, 97-106.	1.3	12
47	Validity of two recently-proposed prognostic grading indices for lung, gastro-intestinal, breast and renal cell cancer patients with radiosurgically-treated brain metastases. Journal of Neuro-Oncology, 2013, 111, 327-335.	2.9	37
48	Delayed Complications in Patients Surviving at Least 3ÂYears After Stereotactic Radiosurgery for Brain Metastases. International Journal of Radiation Oncology Biology Physics, 2013, 85, 53-60.	0.8	32
49	A case-matched study of stereotactic radiosurgery for patients with multiple brain metastases: comparing treatment results for 1–4 vs ≥ 5 tumors. Journal of Neurosurgery, 2013, 118, 1258-1268.	1.6	70
50	How Many Metastases Can Be Treated with Radiosurgery. Progress in Neurological Surgery, 2012, 25, 261-272.	1.3	21
51	Subclassification of Recursive Partitioning Analysis Class II Patients With Brain Metastases Treated Radiosurgically. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1399-1405.	0.8	72
52	Validity of Three Recently Proposed Prognostic Grading Indexes for Breast Cancer Patients With Radiosurgically Treated Brain Metastases. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1110-1115.	0.8	17
53	In Reply to Sperduto etÂal. International Journal of Radiation Oncology Biology Physics, 2012, 84, 876-877.	0.8	2
54	Gamma Knife surgery for patients with brainstem metastases. Journal of Neurosurgery, 2012, 117, 23-30.	1.6	37

4

#	Article	IF	CITATIONS
55	Long-term follow-up results of intentional 2-stage Gamma Knife surgery with an interval of at least 3 years for arteriovenous malformations larger than 10 cm3. Journal of Neurosurgery, 2012, 117, 126-134.	1.6	30
56	Analysis of 2000 cases treated with gamma knife surgery: validating eligibility criteria for a prospective multi-institutional study of stereotactic radiosurgery alone for treatment of patients with 1-10 brain metastases (JLGK0901) in Japan. Journal of Radiosurgery and SBRT, 2012, 2, 19-27.	0.2	4
57	When serendipity meets creativity. Journal of Radiosurgery and SBRT, 2011, 1, 85-93.	0.2	1
58	Gamma Knife radiosurgery for hemangiomas of the cavernous sinus: a seven-institute study in Japan. Journal of Neurosurgery, 2010, 112, 772-779.	1.6	47
59	Gamma Knife surgery as sole treatment for multiple brain metastases: 2-center retrospective review of 1508 cases meeting the inclusion criteria of the JLGK0901 multi-institutional prospective study. Journal of Neurosurgery, 2010, 113, 48-52.	1.6	54
60	Radiosurgery alone for 5 or more brain metastases: expert opinion survey. Journal of Neurosurgery, 2010, 113, 84-89.	1.6	50
61	DELAYED CYST FORMATION AFTER GAMMA KNIFE RADIOSURGERY FOR BRAIN METASTASES. Neurosurgery, 2009, 65, 689-695.	1.1	21
62	Gamma Knife Radiosurgery for Brain Metastases of Non-Lung Cancer Origin: Focusing on Multiple Brain Lesions. Progress in Neurological Surgery, 2008, 22, 154-169.	1.3	18
63	Gamma Knife surgery for metastatic brain tumors. Journal of Neurosurgery, 2008, 109, 118-121.	1.6	17
64	Radiosurgery for Metastatic Brain Tumors. , 2007, 20, 106-128.		18
65	Long-term Results after Fractionated Radiation Therapy for Large Brain Arteriovenous Malformations. Neurosurgery, 2005, 57, 42-49.	1.1	124
66	Gamma Knife radiosurgery for numerous brain metastases: is this a safe treatment?. International Journal of Radiation Oncology Biology Physics, 2002, 53, 1279-1283.	0.8	114
67	Angiographic Long-term Follow-up Data for Arteriovenous Malformations Previously Proven to Be Obliterated after Gamma Knife Radiosurgery. Neurosurgery, 2000, 46, 803-810.	1.1	103
68	A multi-institutional analysis of complication outcomes after arteriovenous malformation radiosurgery. International Journal of Radiation Oncology Biology Physics, 1999, 44, 67-74.	0.8	242
69	Radiation-Related Adverse Effects Observed on Neuro-Imaging Several Years After Radiosurgery for Cerebral Arteriovenous Malformations. World Neurosurgery, 1998, 49, 385-398.	1.3	103
70	Gamma Knife Radiosurgery for Arteriovenous Malformations: Long-term Follow-up Results Focusing on Complications Occurring More than 5 Years after Irradiation. Neurosurgery, 1996, 38, 906-914.	1.1	244
71	Gamma knife radiosurgery for cerebral arteriovenous malformations: An autopsy report focusing on irradiation-induced changes observed in nidus-unrelated arteries. World Neurosurgery, 1995, 44, 421-427.	1.3	42
72	Long-term results of radiosurgery for arteriovenous malformation: Neurodiagnostic imaging and histological studies of angiographically confirmed nidus obliteration. World Neurosurgery, 1992, 37, 219-230.	1.3	135