
Ekaterina S Lobanova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371958/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Gene Therapy in <i>Opn1mw^{â^'/â^'}/Opn1sw^{â^'/â^'}/i> Mice and Implications for Blue Cone Monochromacy Patients with Deletion Mutations. Human Gene Therapy, 2022, 33, 708-718.</i>	2.7	6
2	Tsc2 knockout counteracts ubiquitin-proteasome system insufficiency and delays photoreceptor loss in retinitis pigmentosa. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118479119.	7.1	8
3	Very long chain fatty acid-containing lipids: a decade of novel insights from the study of ELOVL4. Journal of Lipid Research, 2021, 62, 100030.	4.2	38
4	Clarinâ€1 expression in adult mouse and human retina highlights a role of Müller glia in Usher syndrome. Journal of Pathology, 2020, 250, 195-204.	4.5	15
5	Retinal homeostasis and metformin-induced protection are not affected by retina-specific Pparl´ knockout. Redox Biology, 2020, 37, 101700.	9.0	5
6	Phosphoinositide Profile of the Mouse Retina. Cells, 2020, 9, 1417.	4.1	17
7	Probing Proteostatic Stress in Degenerating Photoreceptors Using Two Complementary <i>In Vivo</i> Reporters of Proteasomal Activity. ENeuro, 2020, 7, ENEURO.0428-19.2019.	1.9	7
8	Disrupted Blood-Retina Lysophosphatidylcholine Transport Impairs Photoreceptor Health But Not Visual Signal Transduction. Journal of Neuroscience, 2019, 39, 9689-9701.	3.6	38
9	Systemic Delivery of Genes to Retina Using Adeno-Associated Viruses. Advances in Experimental Medicine and Biology, 2019, 1185, 109-112.	1.6	6
10	C8ORF37 Is Required for Photoreceptor Outer Segment Disc Morphogenesis by Maintaining Outer Segment Membrane Protein Homeostasis. Journal of Neuroscience, 2018, 38, 3160-3176.	3.6	14
11	Increased proteasomal activity supports photoreceptor survival in inherited retinal degeneration. Nature Communications, 2018, 9, 1738.	12.8	65
12	Transducin β-Subunit Can Interact with Multiple G-Protein γ-Subunits to Enable Light Detection by Rod Photoreceptors. ENeuro, 2018, 5, ENEURO.0144-18.2018.	1.9	7
13	Loss of Arf4 causes severe degeneration of the exocrine pancreas but not cystic kidney disease or retinal degeneration. PLoS Genetics, 2017, 13, e1006740.	3.5	27
14	Proteasome overload is a common stress factor in multiple forms of inherited retinal degeneration. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9986-9991.	7.1	94
15	Blood flow controls coagulation onset via the positive feedback of factor VII activation by factor Xa. BMC Systems Biology, 2010, 4, 5.	3.0	46
16	Mechanistic Basis for the Failure of Cone Transducin to Translocate: Why Cones Are Never Blinded by Light. Journal of Neuroscience, 2010, 30, 6815-6824.	3.6	54
17	Phosducin Regulates Transmission at thePhotoreceptor-to-ON-Bipolar Cell Synapse. Journal of Neuroscience, 2010, 30, 3239-3253.	3.6	42
18	Growth Factor Receptor-Bound Protein 14 Undergoes Light-Dependent Intracellular Translocation in Rod Photoreceptors: Functional Role in Retinal Insulin Receptor Activation. Biochemistry, 2009, 48, 5563-5572.	2.5	28

#	Article	IF	CITATIONS
19	Transducin γ-Subunit Sets Expression Levels of α- and β-Subunits and Is Crucial for Rod Viability. Journal of Neuroscience, 2008, 28, 3510-3520.	3.6	86
20	Transducin Translocation in Rods Is Triggered by Saturation of the GTPase-Activating Complex. Journal of Neuroscience, 2007, 27, 1151-1160.	3.6	80
21	Intricate regimes of propagation of an excitation and self-organization in the blood clotting model. Physics-Uspekhi, 2007, 50, 79-94.	2.2	11
22	Minimal Determinants for Binding Activated Gα from the Structure of a Gαi1â^'Peptide Dimerâ€,‡. Biochemistry, 2006, 45, 11390-11400.	2.5	42
23	A new class of stopping self-sustained waves: a factor determining the spatial dynamics of blood coagulation. Physics-Uspekhi, 2002, 45, 619-636.	2.2	34