
## **Cyrille Flamant**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371922/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Mesoscale spatio-temporal variability of airborne lidar-derived aerosol properties in the Barbados<br>region during EUREC <sup>4</sup> A. Atmospheric Chemistry and Physics,<br>2022, 22, 1271-1292.                                                                                                                                                     | 4.9 | 4         |
| 2  | Sensitivity of low-level clouds and precipitation to anthropogenic aerosol emission in southern West Africa: a DACCIWA case study. Atmospheric Chemistry and Physics, 2022, 22, 3251-3273.                                                                                                                                                               | 4.9 | 3         |
| 3  | EUREC <sup>4</sup> A observations from the SAFIRE ATR42 aircraft. Earth<br>System Science Data, 2022, 14, 2021-2064.                                                                                                                                                                                                                                     | 9.9 | 9         |
| 4  | Smoke in the river: an Aerosols, Radiation and Clouds in southern Africa (AEROCLO-sA) case study.<br>Atmospheric Chemistry and Physics, 2022, 22, 5701-5724.                                                                                                                                                                                             | 4.9 | 5         |
| 5  | Preliminary range-resolved detection of stable water isotopologues by differential absorption lidar using a 2 ŵm parametric source. , 2022, , .                                                                                                                                                                                                          |     | 1         |
| 6  | Acceleration of the southern African easterly jet driven by the radiative effect of biomass burning<br>aerosols and its impact on transport during AEROCLO-sA. Atmospheric Chemistry and Physics, 2022, 22,<br>8639-8658.                                                                                                                                | 4.9 | 4         |
| 7  | Cloud Cover over the Sahara during the Summer and Associated Circulation Features. Atmosphere, 2021, 12, 428.                                                                                                                                                                                                                                            | 2.3 | 1         |
| 8  | High Energy Parametric Laser Source and Frequency-Comb-Based Wavelength Reference for CO2 and<br>Water Vapor DIAL in the 2 µm Region: Design and Pre-Development Experimentations. Atmosphere, 2021,<br>12, 402.                                                                                                                                         | 2.3 | 14        |
| 9  | Integrated water vapour content retrievals from ship-borne GNSS receivers during<br>EUREC <sup>4</sup> A. Earth System Science Data, 2021, 13, 1499-1517.                                                                                                                                                                                                | 9.9 | 18        |
| 10 | Integrated water vapour observations in the Caribbean arc from a network of ground-based GNSS<br>receivers during EUREC <sup>4</sup> A. Earth System Science Data, 2021, 13,<br>2407-2436.                                                                                                                                                               | 9.9 | 15        |
| 11 | Aerosol above-cloud direct radiative effect and properties in the Namibian region during the AErosol,<br>RadiatiOn, and CLOuds in southern Africa (AEROCLO-sA) field campaign – Multi-Viewing,<br>Multi-Channel, Multi-Polarization (3MI) airborne simulator and sun photometer measurements.<br>Atmospheric Chemistry and Physics, 2021, 21, 8233-8253. | 4.9 | 2         |
| 12 | Experimental investigation of the stable water isotope distribution in an Alpine lake environment (L-WAIVE). Atmospheric Chemistry and Physics, 2021, 21, 10911-10937.                                                                                                                                                                                   | 4.9 | 7         |
| 13 | EUREC <sup>4</sup> A. Earth System Science Data, 2021, 13, 4067-4119.                                                                                                                                                                                                                                                                                    | 9.9 | 88        |
| 14 | A network of water vapor Raman lidars for improving heavy precipitation forecasting in southern<br>France: introducing the WaLiNeAs initiative. Bulletin of Atmospheric Science and Technology, 2021, 2,<br>1.                                                                                                                                           | 0.9 | 5         |
| 15 | Seasonal forecasts of the Saharan heat low characteristics: a multi-model assessment. Weather and Climate Dynamics, 2021, 2, 893-912.                                                                                                                                                                                                                    | 3.5 | 3         |
| 16 | Differential absorption lidar for water vapor isotopologues in the 1.98 µm spectral region: sensitivity<br>analysis with respect to regional atmospheric variability. Atmospheric Measurement Techniques, 2021,<br>14, 6675-6693.                                                                                                                        | 3.1 | 5         |
| 17 | West African monsoon precipitation impacted by the South Eastern Atlantic biomass burning aerosol outflow. Npj Climate and Atmospheric Science, 2021, 4, .                                                                                                                                                                                               | 6.8 | 6         |
| 18 | A weather regime characterisation of winter biomass aerosol transport from southern Africa.<br>Atmospheric Chemistry and Physics, 2021, 21, 16575-16591.                                                                                                                                                                                                 | 4.9 | 2         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Unexpected Biomass Burning Aerosol Absorption Enhancement Explained by Black Carbon Mixing<br>State. Geophysical Research Letters, 2020, 47, e2020GL089055.                                                                                        | 4.0 | 20        |
| 20 | Threeâ€dimensional pathways of dust over the Sahara during summer 2011 as revealed by new Infrared<br>Atmospheric Sounding Interferometer observations. Quarterly Journal of the Royal Meteorological<br>Society, 2020, 146, 2731-2755.            | 2.7 | 16        |
| 21 | Overview of aerosol optical properties over southern West Africa from DACCIWA aircraft measurements. Atmospheric Chemistry and Physics, 2020, 20, 4735-4756.                                                                                       | 4.9 | 27        |
| 22 | Water vapor mixing ratio and temperature inter-comparison results in the framework of the<br>Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. Bulletin of<br>Atmospheric Science and Technology, 2020, 1, 113-153. | 0.9 | 9         |
| 23 | Water vapor mixing ratio and temperature inter-comparison results in the framework of the<br>Hydrological Cycle in the Mediterranean Experiment—Special Observation Period 1. , 2020, 1, 113.                                                      |     | 1         |
| 24 | Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast AtlanticÂ(SEA) and its sensitivity to absorbing properties: a regional climate modeling study. Atmospheric Chemistry and Physics, 2020, 20, 13191-13216.   | 4.9 | 49        |
| 25 | Trade-wind clouds and aerosols characterized by airborne horizontal lidar measurements during the<br>EUREC <sup>4</sup> A field campaign. Earth System Science Data, 2020, 12,<br>2919-2936.                                                       | 9.9 | 13        |
| 26 | WaVIL : a Differential Absorption LIDAR for Water Vapor and Isotope HDO Observation in the Lower<br>Troposphere - Instrument Design. , 2020, , .                                                                                                   |     | 1         |
| 27 | The AROME-WMED reanalyses of the first special observation period of the Hydrological cycle in the Mediterranean experiment (HyMeX). Geoscientific Model Development, 2019, 12, 2657-2678.                                                         | 3.6 | 12        |
| 28 | Aerosol influences on low-level clouds in the West African monsoon. Atmospheric Chemistry and Physics, 2019, 19, 8503-8522.                                                                                                                        | 4.9 | 19        |
| 29 | The Aerosols, Radiation and Clouds in Southern Africa Field Campaign in Namibia: Overview,<br>Illustrative Observations, and Way Forward. Bulletin of the American Meteorological Society, 2019,<br>100, 1277-1298.                                | 3.3 | 59        |
| 30 | Diurnal cycle of coastal anthropogenic pollutant transport over southern West Africa during the DACCIWA campaign. Atmospheric Chemistry and Physics, 2019, 19, 473-497.                                                                            | 4.9 | 24        |
| 31 | The role of aerosol–radiation–cloud interactions in linking anthropogenic pollution over southern<br>west Africa and dust emission over the Sahara. Atmospheric Chemistry and Physics, 2019, 19,<br>14657-14676.                                   | 4.9 | 10        |
| 32 | Evidence of the complexity of aerosol transport in the lower troposphere on the Namibian coast during AEROCLO-sA. Atmospheric Chemistry and Physics, 2019, 19, 14979-15005.                                                                        | 4.9 | 12        |
| 33 | Remote biomass burning dominates southern West African air pollution during the monsoon.<br>Atmospheric Chemistry and Physics, 2019, 19, 15217-15234.                                                                                              | 4.9 | 29        |
| 34 | The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and<br>Research Highlights. Bulletin of the American Meteorological Society, 2018, 99, 83-104.                                                           | 3.3 | 62        |
| 35 | Simple solutions for the summer shallow atmospheric circulation over North Africa. Quarterly<br>Journal of the Royal Meteorological Society, 2018, 144, 765-779.                                                                                   | 2.7 | 3         |
| 36 | Impact of biomass burning on pollutant surface concentrations in megacities of the Gulf of Guinea.<br>Atmospheric Chemistry and Physics, 2018, 18, 2687-2707.                                                                                      | 4.9 | 36        |

| #  | Article                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Interactions of atmospheric gases and aerosols with the monsoon dynamics over the Sudano-Guinean region during AMMA. Atmospheric Chemistry and Physics, 2018, 18, 445-465.                                                                                                    | 4.9 | 10        |
| 38 | Assessing the role of anthropogenic and biogenic sources on<br>PM <sub>1</sub> over southern West Africa using aircraft measurements.<br>Atmospheric Chemistry and Physics, 2018, 18, 757-772.                                                                                | 4.9 | 26        |
| 39 | Role of moisture patterns in the backbuilding formation of HyMeX IOP13 heavy precipitation systems.<br>Quarterly Journal of the Royal Meteorological Society, 2018, 144, 291-303.                                                                                             | 2.7 | 19        |
| 40 | Multiâ€scale observations of atmospheric moisture variability in relation to heavy precipitating systems<br>in the northwestern Mediterranean during HyMeX IOP12. Quarterly Journal of the Royal<br>Meteorological Society, 2018, 144, 2761-2780.                             | 2.7 | 12        |
| 41 | Aerosol distribution in the northern Gulf of Guinea: local anthropogenic sources, long-range<br>transport, and the role of coastal shallow circulations. Atmospheric Chemistry and Physics, 2018, 18,<br>12363-12389.                                                         | 4.9 | 21        |
| 42 | Initiation and development of a mesoscale convective system in the Ebro River Valley and related heavy precipitation over northeastern Spain during HyMeX IOP 15a. Quarterly Journal of the Royal Meteorological Society, 2017, 143, 942-956.                                 | 2.7 | 19        |
| 43 | The role the Saharan Heat Low plays in dust emission and transport during summertime in North<br>Africa. Aeolian Research, 2017, 28, 1-12.                                                                                                                                    | 2.7 | 9         |
| 44 | EUREC4A: A Field Campaign to Elucidate the Couplings Between Clouds, Convection and Circulation.<br>Surveys in Geophysics, 2017, 38, 1529-1568.                                                                                                                               | 4.6 | 132       |
| 45 | Importance of the Saharan heat low in controlling the North Atlantic free tropospheric humidity<br>budget deduced from IASI <i>Î </i> D observations. Atmospheric Chemistry<br>and Physics, 2017, 17, 9645-9663.                                                              | 4.9 | 17        |
| 46 | A meteorological and chemical overview of the DACCIWA field campaign in West Africa in June–July 2016. Atmospheric Chemistry and Physics, 2017, 17, 10893-10918.                                                                                                              | 4.9 | 62        |
| 47 | Sensitivity of the WRF-Chem (V3.6.1) model to different dust emission parametrisation: assessment in the broader Mediterranean region. Geoscientific Model Development, 2017, 10, 2925-2945.                                                                                  | 3.6 | 34        |
| 48 | Convective initiation and maintenance processes of two backâ€building mesoscale convective systems<br>leading to heavy precipitation events in Southern Italy during <scp>HyMeX IOP</scp> 13. Quarterly<br>Journal of the Royal Meteorological Society, 2016, 142, 2623-2635. | 2.7 | 27        |
| 49 | Offshore deep convection initiation and maintenance during the HyMeX IOP 16a heavy precipitation event. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 259-274.                                                                                            | 2.7 | 53        |
| 50 | Observation of lowâ€level wind reversals in the Gulf of Lion area and their impact on the water vapour variability. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 153-172.                                                                                | 2.7 | 30        |
| 51 | A multiâ€instrument and multiâ€model assessment of atmospheric moisture variability over the western<br>Mediterranean during HyMeX. Quarterly Journal of the Royal Meteorological Society, 2016, 142, 7-22.                                                                   | 2.7 | 16        |
| 52 | Fennec dust forecast intercomparison over the Sahara in June 2011. Atmospheric Chemistry and Physics, 2016, 16, 6977-6995.                                                                                                                                                    | 4.9 | 21        |
| 53 | Recent climatological trend of the Saharan heat low and its impact on the West African climate.<br>Climate Dynamics, 2016, 47, 3479-3498.                                                                                                                                     | 3.8 | 45        |
| 54 | Tropical moisture enriched storm tracks over the Mediterranean and their link with intense rainfall<br>in the Cevennesâ€Vivarais area during HyMeX. Quarterly Journal of the Royal Meteorological Society,<br>2016, 142, 320-334.                                             | 2.7 | 21        |

| #  | Article                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The past, present and future of African dust. Nature, 2016, 531, 493-495.                                                                                                                                                                    | 27.8 | 173       |
| 56 | The Saharan heat low and moisture transport pathways in the central Sahara—Multiaircraft<br>observations and Africa‣AM evaluation. Journal of Geophysical Research D: Atmospheres, 2015, 120,<br>4417-4442.                                  | 3.3  | 29        |
| 57 | On the decadal scale correlation between African dust and Sahel rainfall: The role of Saharan heat<br>low–forced winds. Science Advances, 2015, 1, e1500646.                                                                                 | 10.3 | 36        |
| 58 | Threeâ€dimensional distribution of a major desert dust outbreak over East Asia in March 2008 derived<br>from IASI satellite observations. Journal of Geophysical Research D: Atmospheres, 2015, 120, 7099-7127.                              | 3.3  | 34        |
| 59 | Lagrangian dust model simulations for a case of moist convective dust emission and transport in the<br>western Sahara region during Fennec/LADUNEX. Journal of Geophysical Research D: Atmospheres, 2015,<br>120, 6117-6144.                 | 3.3  | 20        |
| 60 | The radiative impact of desert dust on orographic rain in the Cévennes–Vivarais area: a case study<br>from HyMeX. Atmospheric Chemistry and Physics, 2015, 15, 12231-12249.                                                                  | 4.9  | 7         |
| 61 | Advances in understanding mineral dust and boundary layer processes over the Sahara from Fennec aircraft observations. Atmospheric Chemistry and Physics, 2015, 15, 8479-8520.                                                               | 4.9  | 57        |
| 62 | The DACCIWA Project: Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa. Bulletin of the American Meteorological Society, 2015, 96, 1451-1460.                                                                                     | 3.3  | 84        |
| 63 | Water Vapor–Forced Greenhouse Warming over the Sahara Desert and the Recent Recovery from the<br>Sahelian Drought. Journal of Climate, 2015, 28, 108-123.                                                                                    | 3.2  | 86        |
| 64 | HyMeX-SOP1: The Field Campaign Dedicated to Heavy Precipitation and Flash Flooding in the<br>Northwestern Mediterranean. Bulletin of the American Meteorological Society, 2014, 95, 1083-1100.                                               | 3.3  | 262       |
| 65 | An analysis of aeolian dust in climate models. Geophysical Research Letters, 2014, 41, 5996-6001.                                                                                                                                            | 4.0  | 156       |
| 66 | Intercomparison of satellite dust retrieval products over the west African Sahara during the Fennec campaign in June 2011. Remote Sensing of Environment, 2013, 136, 99-116.                                                                 | 11.0 | 52        |
| 67 | Meteorological and dust aerosol conditions over the western Saharan region observed at Fennec<br>Supersiteâ€2 during the intensive observation period in June 2011. Journal of Geophysical Research D:<br>Atmospheres, 2013, 118, 8426-8447. | 3.3  | 52        |
| 68 | Monitoring the West African heat low at seasonal and intraâ€seasonal timescales using<br><scp>AMSU</scp> â€A sounder. Atmospheric Science Letters, 2013, 14, 263-271.                                                                        | 1.9  | 8         |
| 69 | Characterization of dust emission from alluvial sources using aircraft observations and<br>highâ€resolution modeling. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7237-7259.                                                  | 3.3  | 24        |
| 70 | The importance of the diurnal cycle of Aerosol Optical Depth in West Africa. Geophysical Research<br>Letters, 2013, 40, 785-790.                                                                                                             | 4.0  | 55        |
| 71 | Assimilation of waterâ€vapour airborne lidar observations: impact study on the COPS precipitation forecasts. Quarterly Journal of the Royal Meteorological Society, 2012, 138, 1652-1667.                                                    | 2.7  | 18        |
| 72 | Transport of dust particles from the Bodélé region to the monsoon layer – AMMA case study of the<br>9–14 June 2006 period. Atmospheric Chemistry and Physics, 2011, 11, 479-494.                                                             | 4.9  | 29        |

| #  | Article                                                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | The water vapour intercomparison effort in the framework of the Convective and<br>Orographicallyâ€induced Precipitation Study: airborneâ€toâ€groundâ€based and airborneâ€toâ€airborne lidar<br>systems. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 325-348. | 2.7 | 66        |
| 74 | Longâ€range transport of Saharan dust and its radiative impact on precipitation forecast: a case study<br>during the Convective and Orographicallyâ€induced Precipitation Study (COPS). Quarterly Journal of<br>the Royal Meteorological Society, 2011, 137, 236-251.              | 2.7 | 48        |
| 75 | Observation of convection initiation processes with a suite of stateâ€ofâ€theâ€art research instruments<br>during COPS IOP 8b. Quarterly Journal of the Royal Meteorological Society, 2011, 137, 81-100.                                                                           | 2.7 | 94        |
| 76 | Dust impact on the West African heat low in summertime. Quarterly Journal of the Royal<br>Meteorological Society, 2011, 137, 1227-1240.                                                                                                                                            | 2.7 | 44        |
| 77 | Progress in understanding of weather systems in West Africa. Atmospheric Science Letters, 2011, 12, 7-12.                                                                                                                                                                          | 1.9 | 52        |
| 78 | Radiative heating rates profiles associated with a springtime case of Bodélé and Sudan dust transport over West Africa. Atmospheric Chemistry and Physics, 2010, 10, 8131-8150.                                                                                                    | 4.9 | 60        |
| 79 | Regionalâ€scale convection patterns during strong and weak phases of the Saharan heat low.<br>Atmospheric Science Letters, 2010, 11, 255-264.                                                                                                                                      | 1.9 | 60        |
| 80 | Diurnal cycle of the intertropical discontinuity over West Africa analysed by remote sensing and mesoscale modelling. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 92-106.                                                                                    | 2.7 | 37        |
| 81 | Northward bursts of the West African monsoon leading to rainfall over the Hoggar Massif, Algeria.<br>Quarterly Journal of the Royal Meteorological Society, 2010, 136, 174-189.                                                                                                    | 2.7 | 41        |
| 82 | Links between African easterly waves, midlatitude circulation and intraseasonal pulsations of the<br>West African heat low. Quarterly Journal of the Royal Meteorological Society, 2010, 136, 141-158.                                                                             | 2.7 | 59        |
| 83 | Dust emission and transport associated with a Saharan depression: February 2007 case. Journal of<br>Geophysical Research, 2010, 115, .                                                                                                                                             | 3.3 | 75        |
| 84 | Dynamical mechanisms controlling the vertical redistribution of dust and the thermodynamic<br>structure of the West Saharan atmospheric boundary layer during summer. Atmospheric Science<br>Letters, 2009, 10, 34-42.                                                             | 1.9 | 121       |
| 85 | Seasonal evolution of the West African heat low: a climatological perspective. Climate Dynamics, 2009, 33, 313-330.                                                                                                                                                                | 3.8 | 248       |
| 86 | The impact of a mesoscale convective system cold pool on the northward propagation of the<br>intertropical discontinuity over West Africa. Quarterly Journal of the Royal Meteorological Society,<br>2009, 135, 139-159.                                                           | 2.7 | 54        |
| 87 | Multiâ€platform observations of a springtime case of Bodélé and Sudan dust emission, transport and scavenging over West Africa. Quarterly Journal of the Royal Meteorological Society, 2009, 135, 413-430.                                                                         | 2.7 | 30        |
| 88 | Estimate of Sahelian dust emissions in the intertropical discontinuity region of the West African<br>Monsoon. Journal of Geophysical Research, 2009, 114, .                                                                                                                        | 3.3 | 41        |
| 89 | Dust emissions over the Sahel associated with the West African monsoon intertropical discontinuity<br>region: A representative caseâ€study. Quarterly Journal of the Royal Meteorological Society, 2008, 134,<br>621-634.                                                          | 2.7 | 152       |
| 90 | Multiplatform observations of the seasonal evolution of the Saharan atmospheric boundary layer in<br>Tamanrasset, Algeria, in the framework of the African Monsoon Multidisciplinary Analysis field<br>campaign conducted in 2006. Journal of Geophysical Research, 2008, 113, .   | 3.3 | 64        |

| #   | Article                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | RESEARCH CAMPAIGN: The Convective and Orographically Induced Precipitation Study. Bulletin of the American Meteorological Society, 2008, 89, 1477-1486.                                                                                                                                       | 3.3 | 194       |
| 92  | Mechanisms initiating deep convection over complex terrain during COPS. Meteorologische Zeitschrift, 2008, 17, 931-948.                                                                                                                                                                       | 1.0 | 86        |
| 93  | Gap flows: Results from the Mesoscale Alpine Programme. Quarterly Journal of the Royal<br>Meteorological Society, 2007, 133, 881-896.                                                                                                                                                         | 2.7 | 76        |
| 94  | Föhn in the Rhine Valley during MAP: A review of its multiscale dynamics in complex valley geometry.<br>Quarterly Journal of the Royal Meteorological Society, 2007, 133, 897-916.                                                                                                            | 2.7 | 38        |
| 95  | Airborne observations of the impact of a convective system on the planetary boundary layer<br>thermodynamics and aerosol distribution in the inter-tropical discontinuity region of the West<br>African Monsoon. Quarterly Journal of the Royal Meteorological Society, 2007, 133, 1175-1189. | 2.7 | 143       |
| 96  | Validation of precipitable water from ECMWF model analyses with GPS and radiosonde data during the MAP SOP. Quarterly Journal of the Royal Meteorological Society, 2005, 131, 3013-3036.                                                                                                      | 2.7 | 70        |
| 97  | An Overview of the International H2O Project (IHOP_2002) and Some Preliminary Highlights. Bulletin of the American Meteorological Society, 2004, 85, 253-278.                                                                                                                                 | 3.3 | 359       |
| 98  | Gap flow in an Alpine valley during a shallow south foÂ <sup></sup> hn event: Observations, numerical simulations<br>and hydraulic analogue. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1173-1210.                                                                     | 2.7 | 56        |
| 99  | Airborne lidar LEANDRE II for water-vapor profiling in the troposphere I System description. Applied Optics, 2001, 40, 3450.                                                                                                                                                                  | 2.1 | 92        |
| 100 | Airborne lidar LEANDRE II for water-vapor profiling in the troposphere II First results. Applied Optics, 2001, 40, 3462.                                                                                                                                                                      | 2.1 | 37        |
| 101 | Airborne lidar measurements of aerosol spatial distribution and optical properties over the Atlantic<br>Ocean during a European pollution outbreak of ACE-2. Tellus, Series B: Chemical and Physical<br>Meteorology, 2000, 52, 662-677.                                                       | 1.6 | 34        |