Lijie Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371900/publications.pdf Version: 2024-02-01

Lucelin

#	Article	IF	CITATIONS
1	Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain, Behavior, and Immunity, 2022, 100, 155-171.	2.0	30
2	Unexpected Consequences of Noise-Induced Hearing Loss: Impaired Hippocampal Neurogenesis, Memory, and Stress. Frontiers in Integrative Neuroscience, 2022, 16, .	1.0	9
3	High-frequency Noise-induced Hearing Loss Disrupts Functional Connectivity in Non-auditory Areas with Cognitive Disturbances. Neuroscience Bulletin, 2021, 37, 720-724.	1.5	5
4	Stress Response and Hearing Loss Differentially Contribute to Dynamic Alterations in Hippocampal Neurogenesis and Microglial Reactivity in Mice Exposed to Acute Noise Exposure. Frontiers in Neuroscience, 2021, 15, 749925.	1.4	5
5	Accelerated age-related decline in hippocampal neurogenesis in mice with noise-induced hearing loss is associated with hippocampal microglial degeneration. Aging, 2020, 12, 19493-19519.	1.4	18
6	Noise-induced Cochlear Synaptopathy and Signal Processing Disorders. Neuroscience, 2019, 407, 41-52.	1.1	28
7	The effect of noise exposure on insulin sensitivity in mice may be mediated by the JNK/IRS1 pathway. Environmental Health and Preventive Medicine, 2018, 23, 6.	1.4	7
8	Hippocampal Mechanisms Underlying Impairment in Spatial Learning Long After Establishment of Noise-Induced Hearing Loss in CBA Mice. Frontiers in Systems Neuroscience, 2018, 12, 35.	1.2	38
9	Chronic noise-exposure exacerbates insulin resistance and promotes the manifestations of the type 2 diabetes in a high-fat diet mouse model. PLoS ONE, 2018, 13, e0195411.	1.1	17
10	Effects of Noise Exposure on Systemic and Tissue-Level Markers of Glucose Homeostasis and Insulin Resistance in Male Mice. Environmental Health Perspectives, 2016, 124, 1390-1398.	2.8	23
11	Cochlear Synaptopathy and Noise-Induced Hidden Hearing Loss. Neural Plasticity, 2016, 2016, 1-9.	1.0	56
12	Coding Deficits in Noise-Induced Hidden Hearing Loss May Stem from Incomplete Repair of Ribbon Synapses in the Cochlea. Frontiers in Neuroscience, 2016, 10, 231.	1.4	44
13	Coding deficits in hidden hearing loss induced by noise: the nature and impacts. Scientific Reports, 2016, 6, 25200.	1.6	83
14	Noise induced hearing loss impairs spatial learning/memory and hippocampal neurogenesis in mice. Scientific Reports, 2016, 6, 20374.	1.6	90
15	Cochlear protection against cisplatin by viral transfection of X-linked inhibitor of apoptosis protein across round window membrane. Gene Therapy, 2015, 22, 546-552.	2.3	13
16	Noise-induced damage to ribbon synapses without permanent threshold shifts in neonatal mice. Neuroscience, 2015, 304, 368-377.	1.1	26
17	Spatial learning and memory deficits in young adult mice exposed to a brief intense noise at postnatal age. Journal of Otology, 2015, 10, 21-28.	0.4	26
18	Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. ELife, 2015, 4, e06576.	2.8	188

LIJIE LIU

#	Article	IF	CITATIONS
19	Chromanol 293B, an inhibitor of KCNQ1 channels, enhances glucose-stimulated insulin secretion and increases glucagon-like peptide-1 level in mice. Islets, 2014, 6, e962386.	0.9	24
20	Ribbon Synapse Plasticity in the Cochleae of Guinea Pigs after Noise-Induced Silent Damage. PLoS ONE, 2013, 8, e81566.	1.1	115
21	Silent Damage of Noise on Cochlear Afferent Innervation in Guinea Pigs and the Impact on Temporal Processing. PLoS ONE, 2012, 7, e49550.	1.1	63
22	Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and MDR1 shRNA expression vector in leukemia cells. International Journal of Nanomedicine, 2010, 5, 437.	3.3	21
23	Biocompatibility of Fe3O4/DNR magnetic nanoparticles in the treatment of hematologic malignancies. International Journal of Nanomedicine, 2010, 5, 1079.	3.3	51
24	The Biocompatibility and Security of Magnetic Nanoparticles Fe3O4-DNR Used In Hematologic Malignancies Therapy. Blood, 2010, 116, 3970-3970.	0.6	0
25	Effect of Fe(3)O(4)-magnetic nanoparticles on acute exercise enhanced KCNQ(1) expression in mouse cardiac muscle. International Journal of Nanomedicine, 2010, 5, 109-16.	3.3	5
26	The reversal effect of magnetic Fe3O4 nanoparticles loaded with cisplatin on SKOV3/DDP ovarian carcinoma cells. International Journal of Nanomedicine, 2009, 4, 107.	3.3	21
27	Daunorubicin-loaded magnetic nanoparticles of Fe3O4 overcome multidrug resistance and induce apoptosis of K562-n/VCR cells in vivo. International Journal of Nanomedicine, 2009, 4, 201.	3.3	31
28	Synergistic effect of magnetic nanoparticles of Fe3O4 with gambogic acid on apoptosis of K562 leukemia cells. International Journal of Nanomedicine, 2009, 4, 251.	3.3	30
29	Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells. International Journal of Nanomedicine, 2009, , 65.	3.3	15
30	Effect of magnetic nanoparticles of Fe3O4 and 5-bromotetrandrine on reversal of multidrug resistance in K562/AO2 leukemic cells. International Journal of Nanomedicine, 2009, 4, 209.	3.3	24
31	Reversal of multidrug resistance by magnetic Fe3O4 nanoparticle copolymerizating daunorubicin and 5-bromotetrandrine in xenograft nude-mice. International Journal of Nanomedicine, 2009, 4, 73.	3.3	29
32	Magnetic nanoparticle of Fe3O4 and 5-bromotetrandrin interact synergistically to induce apoptosis by daunorubicin in leukemia cells. International Journal of Nanomedicine, 2009, 4, 65-71.	3.3	27
33	Alphaâ€fetoprotein is dynamically expressed in rat pancreas during development. Development Growth and Differentiation, 2007, 49, 669-681.	0.6	7