Jerzy Jg Gawad

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371809/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: Crystal plasticity models, advanced yield functions and parameter identification. International Journal of Plasticity, 2015, 66, 3-30.	8.8	127
2	Inverse analysis for identification of rheological and friction models in metal forming. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 6778-6798.	6.6	110
3	An evolving plane stress yield criterion based on crystal plasticity virtual experiments. International Journal of Plasticity, 2015, 75, 141-169.	8.8	68
4	Hierarchical multi-scale modeling of texture induced plastic anisotropy in sheet forming. Computational Materials Science, 2013, 66, 65-83.	3.0	45
5	The prediction of differential hardening behaviour of steels by multi-scale crystal plasticity modelling. International Journal of Plasticity, 2015, 73, 119-141.	8.8	31
6	A full-field strategy to take texture-induced anisotropy into account during FE simulations of metal forming processes. Jom, 2011, 63, 37-43.	1.9	23
7	Identification of Rheological Parameters on the Basis of Various Types of Compression and Tension Tests. Steel Research International, 2005, 76, 131-137.	1.8	20
8	Internal Variable and Cellular Automata-Finite Element Models of Heat Treatment. International Journal for Multiscale Computational Engineering, 2010, 8, 267-285.	1.2	10
9	Validation of Multi-scale Model Describing Microstructure Evolution in Steels. Steel Research International, 2008, 79, 652-659.	1.8	9
10	Multi-scale material modelling to predict the material anisotropy of multi-phase steels. Computational Materials Science, 2019, 160, 382-396.	3.0	8
11	Inverse Analysis of Tensile Tests. Steel Research International, 2005, 76, 807-814.	1.8	6
12	Multi-scale modelling of the development of heterogeneous distributions of stress, strain, deformation texture and anisotropy in sheet metal forming. Procedia IUTAM, 2012, 3, 67-75.	1.2	6
13	Advanced Plasticity Modeling for Ultra-Low-Cycle-Fatigue Simulation of Steel Pipe. Metals, 2017, 7, 140.	2.3	6
14	Multiscale model of dynamic recrystallization in hot rolling. International Journal of Material Forming, 2008, 1, 69-72.	2.0	5
15	A Coupled Multiscale Model of Texture Evolution and Plastic Anisotropy. , 2010, , .		4
16	Modelling of Microstructure Changes During Hot Deformation Using Cellular Automata. Archives of Metallurgy and Materials, 2011, 56, 523-532.	0.6	4
17	Plastic Behaviour of Sheet Metals. ESAFORM Bookseries on Material Forming, 2016, , 1-46.	0.1	4
18	Multiscale CAFE Modelling of Dynamic Recrystallization. Materials Science Forum, 2010, 638-642, 2567-2572.	0.3	3

Jerzy Jg Gawad

#	Article	IF	CITATIONS
19	An Efficient Strategy to Take Texture-Induced Anisotropy Point-by-Point into Account during FE Simulations of Metal Forming Processes. Materials Science Forum, 0, 702-703, 26-33.	0.3	3
20	Identification of constitutive equation in hierarchical multiscale modelling of cup drawing process. , 2011, , .		2
21	Anisotropic Sheet Forming Simulations Based on the ALAMEL Model: Application on Cup Deep Drawing and Ironing. , 2011, , .		1
22	Modelling of Microstructure Changes in Hot Deformed Materials Using Cellular Automata. , 2011, , .		1
23	Multiscale Modelling of Mechanical Anisotropy. ESAFORM Bookseries on Material Forming, 2016, , 79-134.	0.1	1
24	The Influence of Deformation Conditions on Structure of Fe-Al Intermetallic Phase ‒ Based Alloys. Materials Science Forum, 2010, 638-642, 1362-1367.	0.3	0
25	Simulation of a Thick Plate Forming Benchmark Using a Multi Scale Texture Evolution and Anisotropic Plasticity Model. Key Engineering Materials, 0, 549, 436-443.	0.4	0
26	Validation of a Multi-Scale Model for Shear Deformation of an Aluminium Sheet Alloy. Key Engineering Materials, 2014, 611-612, 553-561.	0.4	0
27	Spatial clustering strategies for hierarchical multi-scale modelling of metal plasticity. Modelling and Simulation in Materials Science and Engineering, 2017, 25, 074003.	2.0	0
28	A numerical multi-scale model to predict macroscopic material anisotropy of multi-phase steels from crystal plasticity material definitions. AIP Conference Proceedings, 2017, , .	0.4	0
29	The Application of Crystal Plasticity Material Files in Stamping Simulations. Journal of Physics: Conference Series, 2018, 1063, 012103.	0.4	0
30	A Numerical Model for the Prediction of Microstructure Distribution across the Thickness of Quenched Steel Plates. Materials Science Forum, 2019, 949, 32-39.	0.3	0
31	Full-Field Multi-Scale Modelling of Sheet Metal Forming Taking the Evolution of Texture and Plastic Anisotropy Into Account. , 2013, , 213-218.		0
32	Full-Field Multi-Scale Modelling of Sheet Metal Forming Taking the Evolution of Texture and Plastic Anisotropy into Account. , 0, , 213-218.		0
33	SPATIAL CLUSTERING STRATEGIES FOR HIERARCHICAL MULTI-SCALE MODELLING OF METAL PLASTICITY. , 2016,		0