Louise Olsson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6371192/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Kinetic Study of NO Oxidation and NOx Storage on Pt/Al2O3 and Pt/BaO/Al2O3. Journal of Physical Chemistry B, 2001, 105, 6895-6906.	2.6	318
2	Selective catalytic reduction of NOx with NH3 over Cu-ZSM-5—The effect of changing the gas composition. Applied Catalysis B: Environmental, 2006, 64, 180-188.	20.2	225
3	A kinetic model for ammonia selective catalytic reduction over Cu-ZSM-5. Applied Catalysis B: Environmental, 2008, 81, 203-217.	20.2	213
4	The mechanism for NOx storage. Catalysis Letters, 2000, 66, 71-74.	2.6	205
5	A Kinetic Study of Oxygen Adsorption/Desorption and NO Oxidation over Pt/Al2O3 Catalysts. Journal of Physical Chemistry B, 1999, 103, 10433-10439.	2.6	179
6	Urea thermolysis studied under flow reactor conditions using DSC and FT-IR. Chemical Engineering Journal, 2009, 150, 544-550.	12.7	123
7	Detailed kinetic modeling of NH3 SCR over Cu-ZSM-5. Applied Catalysis B: Environmental, 2009, 92, 138-153.	20.2	117
8	Impact of sulfur oxide on NH3-SCR over Cu-SAPO-34. Applied Catalysis B: Environmental, 2015, 166-167, 568-579.	20.2	111
9	Mean field modelling of NOx storage on Pt/BaO/Al2O3. Catalysis Today, 2002, 73, 263-270.	4.4	110
10	A multi-site kinetic model for NH3-SCR over Cu/SSZ-13. Applied Catalysis B: Environmental, 2015, 174-175, 212-224.	20.2	110
11	Comparison of Cu/BEA, Cu/SSZ-13 and Cu/SAPO-34 for ammonia-SCR reactions. Catalysis Today, 2015, 258, 49-55.	4.4	103
12	Detailed kinetic modeling of NOx adsorption and NO oxidation over Cu-ZSM-5. Applied Catalysis B: Environmental, 2009, 87, 200-210.	20.2	100
13	The effect of Si/Al ratio of zeolite supported Pd for complete CH4 oxidation in the presence of water vapor and SO2. Applied Catalysis B: Environmental, 2019, 250, 117-131.	20.2	96
14	Deactivation of Cu-SSZ-13 by SO ₂ exposure under SCR conditions. Catalysis Science and Technology, 2016, 6, 2565-2579.	4.1	95
15	Detailed Kinetic Modeling of NH ₃ and H ₂ O Adsorption, and NH ₃ Oxidation over Cu-ZSM-5. Journal of Physical Chemistry C, 2009, 113, 1393-1405.	3.1	94
16	Global Kinetic Model for Lean NOx Traps. Industrial & Engineering Chemistry Research, 2005, 44, 3021-3032.	3.7	93
17	A Kinetic Model for the Selective Catalytic Reduction of NO _{<i>x</i>} with NH ₃ over an Feâ^'zeolite Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 39-52.	3.7	92
18	Deactivation of Cu/SAPO-34 during low-temperature NH3-SCR. Applied Catalysis B: Environmental, 2015, 165, 192-199.	20.2	92

#	Article	IF	CITATIONS
19	The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts. Journal of Catalysis, 2014, 311, 170-181.	6.2	91
20	Stability and activity of Pd-, Pt- and Pd–Pt catalysts supported on alumina for NO oxidation. Applied Catalysis B: Environmental, 2015, 168-169, 342-352.	20.2	87
21	Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Applied Catalysis B: Environmental, 2017, 219, 142-154.	20.2	85
22	Insights into hydrothermal aging of phosphorus-poisoned Cu-SSZ-13 for NH3-SCR. Applied Catalysis B: Environmental, 2019, 241, 205-216.	20.2	84
23	The impact of automotive catalysis on the United Nations sustainable development goals. Nature Catalysis, 2019, 2, 566-570.	34.4	81
24	Model Studies of NOx Storage and Sulphur Deactivation of NOx Storage Catalysts. Topics in Catalysis, 2001, 16/17, 133-137.	2.8	80
25	Identification of adsorbed species on Cu-ZSM-5 under NH3 SCR conditions. Topics in Catalysis, 2007, 42-43, 113-117.	2.8	80
26	Hydrothermal Stability of Fe–BEA as an NH ₃ -SCR Catalyst. Industrial & Engineering Chemistry Research, 2012, 51, 12762-12772.	3.7	79
27	Investigation of the robust hydrothermal stability of Cu/LTA for NH3-SCR reaction. Applied Catalysis B: Environmental, 2019, 246, 242-253.	20.2	73
28	The effect of iron loading and hydrothermal aging on one-pot synthesized Fe/SAPO-34 for ammonia SCR. Applied Catalysis B: Environmental, 2016, 180, 775-787.	20.2	68
29	Ammonia Desorption Peaks Can Be Assigned to Different Copper Sites in Cu/SSZ-13. Catalysis Letters, 2017, 147, 1882-1890.	2.6	68
30	Urea decomposition and HNCO hydrolysis studied over titanium dioxide, Fe-Beta and γ-Alumina. Applied Catalysis B: Environmental, 2011, 106, 273-279.	20.2	67
31	Detailed kinetic modeling of NOxNOx storage and reduction with hydrogen as the reducing agent and in the presence of CO2 and H2O over a Pt/Ba/Al catalyst. Journal of Catalysis, 2008, 258, 273-288.	6.2	66
32	Investigating the effect of Fe as a poison for catalytic HDO over sulfided NiMo alumina catalysts. Applied Catalysis B: Environmental, 2018, 227, 240-251.	20.2	66
33	The effect gas composition during thermal aging on the dispersion and NO oxidation activity over Pt/Al2O3 catalysts. Applied Catalysis B: Environmental, 2013, 129, 517-527.	20.2	65
34	Recent advances in hydrogenation of CO ₂ into hydrocarbons <i>via</i> methanol intermediate over heterogeneous catalysts. Catalysis Science and Technology, 2021, 11, 1665-1697.	4.1	64
35	A kinetic model for sulfur poisoning and regeneration of Cu/SSZ-13 used for NH 3 -SCR. Applied Catalysis B: Environmental, 2016, 183, 394-406.	20.2	60
36	Improved low-temperature SCR activity for Fe-BEA catalysts by H2-pretreatment. Applied Catalysis B: Environmental, 2013, 138-139, 373-380.	20.2	59

#	Article	IF	CITATIONS
37	Reduction of NOx over a combined NSR and SCR system. Applied Catalysis B: Environmental, 2010, 98, 112-121.	20.2	56
38	Kinetic modeling of H-BEA and Fe-BEA as NH3-SCR catalysts—Effect of hydrothermal treatment. Catalysis Today, 2012, 197, 24-37.	4.4	56
39	Mechanistic study of hydrothermally aged Cu/SSZ-13 catalysts for ammonia-SCR. Catalysis Today, 2018, 307, 55-64.	4.4	56
40	Chemical deactivation of Fe-BEA as NH3-SCR catalyst—Effect of phosphorous. Applied Catalysis B: Environmental, 2014, 147, 111-123.	20.2	54
41	The influence of gas composition on Pd-based catalyst activity in methane oxidation â^' inhibition and promotion by NO. Applied Catalysis B: Environmental, 2017, 200, 351-360.	20.2	53
42	Complete methane oxidation over Ba modified Pd/Al2O3: The effect of water vapor. Applied Catalysis B: Environmental, 2018, 231, 242-250.	20.2	53
43	Selective oxidation of ammonia to nitrogen on bi-functional Cu–SSZ-13 and Pt/Al2O3 monolith catalyst. Catalysis Today, 2016, 267, 130-144.	4.4	52
44	The effect of water on methane oxidation over Pd/Al ₂ O ₃ under lean, stoichiometric and rich conditions. Catalysis Science and Technology, 2017, 7, 3084-3096.	4.1	51
45	Deceleration of SO2 poisoning on PtPd/Al2O3 catalyst during complete methane oxidation. Applied Catalysis B: Environmental, 2018, 236, 384-395.	20.2	51
46	Heat of adsorption for NH3, NO2 and NO on Cu-Beta zeolite using microcalorimeter for NH3 SCR applications. Catalysis Today, 2010, 151, 237-243.	4.4	49
47	Investigation of the Effect of Accelerated Hydrothermal Aging on the Cu Sites in a Cu-BEA Catalyst for NH3-SCR Applications. Topics in Catalysis, 2013, 56, 317-322.	2.8	48
48	The Effect of Si/Al Ratio for Pd/BEA and Pd/SSZ-13 Used as Passive NOx Adsorbers. Topics in Catalysis, 2018, 61, 2007-2020.	2.8	48
49	Study of the "Fast SCR―like mechanism of H2-assisted SCR of NOx with ammonia over Ag/Al2O3. Applied Catalysis B: Environmental, 2012, 113-114, 228-236.	20.2	47
50	Global kinetic modeling of hydrothermal aging of NH3-SCR over Cu-zeolites. Applied Catalysis B: Environmental, 2015, 163, 382-392.	20.2	46
51	Chemical deactivation by phosphorous under lean hydrothermal conditions over Cu/BEA NH3-SCR catalysts. Applied Catalysis B: Environmental, 2014, 147, 251-263.	20.2	45
52	Insight into hydrothermal aging effect on Pd sites over Pd/LTA and Pd/SSZ-13 as PNA and CO oxidation monolith catalysts. Applied Catalysis B: Environmental, 2020, 278, 119315.	20.2	45
53	Deactivation mechanism of Cu active sites in Cu/SSZ-13 — Phosphorus poisoning and the effect of hydrothermal aging. Applied Catalysis B: Environmental, 2020, 269, 118781.	20.2	45
54	Sulfur deactivation of Pt/SiO2, Pt/BaO/Al2O3, and BaO/Al2O3 NOx storage catalysts: Influence of SO2 exposure conditions. Journal of Catalysis, 2005, 234, 206-218.	6.2	44

#	Article	IF	CITATIONS
55	Interzeolite Conversion of FAU Type Zeolite into CHA and its Application in NH3-SCR. Topics in Catalysis, 2013, 56, 550-557.	2.8	44
56	Kinetic study of hydrodeoxygenation of stearic acid as model compound for renewable oils. Chemical Engineering Journal, 2019, 364, 376-389.	12.7	44
57	Insight into the SO2 poisoning mechanism for NOx removal by NH3-SCR over Cu/LTA and Cu/SSZ-13. Chemical Engineering Journal, 2020, 395, 125048.	12.7	44
58	The Effect of a Changing Lean Gas Composition on the Ability of NO ₂ Formation and NO _x Reduction over Supported Pt Catalysts. Topics in Catalysis, 2004, 30/31, 85-90.	2.8	40
59	Effect of various structure directing agents (SDAs) on low-temperature deactivation of Cu/SAPO-34 during NH ₃ -SCR reaction. Catalysis Science and Technology, 2018, 8, 3090-3106.	4.1	40
60	The influence of the preparation procedure on the storage and regeneration behavior of Pt and Ba based NOx storage and reduction catalysts. Applied Catalysis B: Environmental, 2009, 88, 240-248.	20.2	38
61	Experimental evidence of the mechanism behind NH3 overconsumption during SCR over Fe-zeolites. Journal of Catalysis, 2013, 299, 101-108.	6.2	38
62	Deactivation of Cu-SSZ-13 SCR catalysts by vapor-phase phosphorus exposure. Applied Catalysis B: Environmental, 2019, 256, 117815.	20.2	36
63	The influence of hydrogen on the stability of nitrates during H2-assisted SCR over Ag/Al2O3 catalysts – A DRIFT study. Journal of Catalysis, 2013, 307, 153-161.	6.2	35
64	Kinetic modeling of NH3-SCR over a supported Cu zeolite catalyst using axial species distribution measurements. Applied Catalysis B: Environmental, 2015, 163, 393-403.	20.2	35
65	Influence of phosphorus on Cu-SSZ-13 for selective catalytic reduction of NO x by ammonia. Catalysis Today, 2017, 297, 46-52.	4.4	35
66	Kinetic Modelling in Automotive Catalysis. Topics in Catalysis, 2004, 28, 89-98.	2.8	34
67	Chemical deactivation of H-BEA and Fe-BEA as NH3-SCR catalysts—effect of potassium. Applied Catalysis B: Environmental, 2015, 166-167, 277-286.	20.2	33
68	The role of Pd–Pt Interactions in the Oxidation and Sulfur Resistance of Bimetallic Pd–Pt/γ-Al ₂ O ₃ Diesel Oxidation Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 6596-6612.	3.7	33
69	The beneficial effect of SO2 on platinum migration and NO oxidation over Pt containing monolith catalysts. Catalysis Today, 2009, 147, S290-S294.	4.4	32
70	Local ammonia storage and ammonia inhibition in a monolithic copper-beta zeolite SCR catalyst. Applied Catalysis B: Environmental, 2012, 126, 144-152.	20.2	31
71	Impact of Copper Loading on NH3-Selective Catalytic Reduction, Oxidation Reactions and N2O Formation over Cu/SAPO-34. Energies, 2017, 10, 489.	3.1	30
72	Silver as Storage Compound for NOx at Low Temperatures. Catalysis Letters, 2014, 144, 674-684.	2.6	27

#	Article	IF	CITATIONS
73	Effect of post-synthesis hydrogen-treatment on the nature of iron species in Fe-BEA as NH ₃ -SCR catalyst. Catalysis Science and Technology, 2014, 4, 2932-2937.	4.1	27
74	Kinetic modelling of sulfur deactivation of Pt/BaO/Al2O3 and BaO/Al2O3 NOx storage catalysts. Applied Catalysis B: Environmental, 2007, 70, 179-188.	20.2	26
75	The effect of the gas composition on hydrogen-assisted NH3-SCR over Ag/Al2O3. Applied Catalysis B: Environmental, 2013, 136-137, 168-176.	20.2	26
76	Kinetic modeling of sulfur poisoning and regeneration of lean NOx traps. Applied Catalysis B: Environmental, 2010, 100, 31-41.	20.2	25
77	Fundamental studies of NOx storage at low temperatures. Topics in Catalysis, 2007, 42-43, 95-98.	2.8	24
78	Sulfur Dioxide Exposure: A Way To Improve the Oxidation Catalyst Performance. Industrial & Engineering Chemistry Research, 2013, 52, 14556-14566.	3.7	24
79	An Experimental and Kinetic Modelling Study for Methane Oxidation over Pd-based Catalyst: Inhibition by Water. Catalysis Letters, 2017, 147, 2360-2371.	2.6	24
80	Volatilisation and subsequent deposition of platinum oxides from diesel oxidation catalysts. Applied Catalysis B: Environmental, 2019, 241, 338-350.	20.2	24
81	Structure and performance of zeolite supported Pd for complete methane oxidation. Catalysis Today, 2021, 382, 3-12.	4.4	24
82	N ₂ O Formation during NH ₃ -SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. Industrial & Engineering Chemistry Research, 2021, 60, 17826-17839.	3.7	24
83	The Effect of NO2/NO x Feed Ratio on the NH3-SCR System Over Cu–Zeolites with Varying Copper Loading. Catalysis Letters, 2014, 144, 70-80.	2.6	23
84	Effect of Dimethyl Disulfide on Activity of NiMo Based Catalysts Used in Hydrodeoxygenation of Oleic Acid. Industrial & Engineering Chemistry Research, 2017, 56, 5547-5557.	3.7	23
85	The effect of changing the gas composition on soot oxidation over DPF and SCR-coated filters. Catalysis Today, 2018, 306, 243-250.	4.4	23
86	Kinetic modeling of NOx storage and reduction using spatially resolved MS measurements. Applied Catalysis B: Environmental, 2014, 147, 1028-1041.	20.2	22
87	Evaluation of an Integrated Selective Catalytic Reduction-Coated Particulate Filter. Industrial & Engineering Chemistry Research, 2015, 54, 11779-11791.	3.7	22
88	Understanding the mechanism of low temperature deactivation of Cu/SAPO-34 exposed to various amounts of water vapor in the NH3-SCR reaction. Catalysis Science and Technology, 2019, 9, 3623-3636.	4.1	22
89	Methanol mediated direct CO2 hydrogenation to hydrocarbons: Experimental and kinetic modeling study. Chemical Engineering Journal, 2022, 435, 135090.	12.7	22
90	The addition of alkali and alkaline earth metals to Pd/Al2O3 to promote methane combustion. Effect of Pd and Ca loading. Catalysis Today, 2018, 299, 212-218.	4.4	21

#	Article	IF	CITATIONS
91	NiMoS on alumina-USY zeolites for hydrotreating lignin dimers: effect of support acidity and cleavage of C–C bonds. Sustainable Energy and Fuels, 2020, 4, 149-163.	4.9	21
92	Hydrotreatment of lignin dimers over NiMoS-USY: effect of silica/alumina ratio. Sustainable Energy and Fuels, 2021, 5, 3445-3457.	4.9	21
93	Regeneration of sulfur-poisoned Cu-SSZ-13 catalysts: Copper speciation and catalytic performance evaluation. Applied Catalysis B: Environmental, 2021, 299, 120626.	20.2	21
94	Global Kinetic Modelling of a Supplier Barium- and Potassium-Containing Lean NOxTrap. Industrial & Engineering Chemistry Research, 2006, 45, 8883-8890.	3.7	20
95	Evaluation of H2 effect on NO oxidation over a diesel oxidation catalyst. Applied Catalysis B: Environmental, 2015, 179, 542-550.	20.2	20
96	Catalytic hydrotreatment of pyrolysis oil phenolic compounds over Pt/Al2O3 and Pd/C. Fuel, 2019, 243, 441-448.	6.4	20
97	Layered Pd/SSZ-13 with Cu/SSZ-13 as PNA â~` SCR dual-layer monolith catalyst for NOx abatement. Catalysis Today, 2021, 360, 356-366.	4.4	20
98	Reductive liquefaction of lignin to monocyclic hydrocarbons: ReS2/Al2O3 as efficient char inhibitor and hydrodeoxygenation catalyst. Applied Catalysis B: Environmental, 2021, 297, 120449.	20.2	20
99	DME, propane and CO: The oxidation, steam reforming and WGS over Pt/Al2O3. The effect of aging and presence of water. Applied Catalysis B: Environmental, 2014, 160-161, 480-491.	20.2	19
100	Influencing the NO _x Stability by Metal Oxide Addition to Pd/BEA for Passive NO _x Adsorbers. Industrial & Engineering Chemistry Research, 2020, 59, 9830-9840.	3.7	19
101	Role of transition metals on MoS ₂ -based supported catalysts for hydrodeoxygenation (HDO) of propylguaiacol. Sustainable Energy and Fuels, 2021, 5, 2097-2113.	4.9	19
102	Hydrothermal Aging-Induced Changes in Washcoats of Commercial Three-Way Catalysts. Topics in Catalysis, 2013, 56, 323-328.	2.8	17
103	Kinetic modeling of CO assisted passive NOx adsorption on Pd/SSZ-13. Chemical Engineering Journal, 2022, 428, 132459.	12.7	17
104	Influence of Hydrothermal Ageing on NH3-SCR Over Fe-BEA—Inhibition of NH3-SCR by Ammonia. Topics in Catalysis, 2013, 56, 80-88.	2.8	16
105	Mechanistic investigations of the promoting role of Rh on the NSR performance of NOx storage BaO-based catalysts. Applied Catalysis B: Environmental, 2013, 132-133, 266-281.	20.2	16
106	Performance Studies and Correlation between Vehicle- and Rapid- Aged Commercial Lean NOx Trap Catalysts. SAE International Journal of Engines, 0, 10, 1613-1626.	0.4	16
107	Lean and rich aging of a Cu/SSZ-13 catalyst for combined lean NO _x trap (LNT) and selective catalytic reduction (SCR) concept. Catalysis Science and Technology, 2019, 9, 2152-2162.	4.1	16
108	A deactivation mechanism study of phosphorus-poisoned diesel oxidation catalysts: model and supplier catalysts. Catalysis Science and Technology, 2020, 10, 5602-5617.	4.1	16

#	Article	IF	CITATIONS
109	The role of catalyst poisons during hydrodeoxygenation of renewable oils. Catalysis Today, 2021, 367, 28-42.	4.4	16
110	Mechanistic investigation of hydrothermal aging of Cu-Beta for ammonia SCR. Applied Catalysis B: Environmental, 2011, , .	20.2	15
111	Hydroconversion of abietic acid into value-added fuel components over sulfided NiMo catalysts with varying support acidity. Fuel Processing Technology, 2019, 190, 55-66.	7.2	15
112	Influence of Bio-Oil Phospholipid on the Hydrodeoxygenation Activity of NiMoS/Al2O3 Catalyst. Catalysts, 2018, 8, 418.	3.5	14
113	A kinetic model for SCR coated particulate filters—Effect of ammonia-soot interactions. Applied Catalysis B: Environmental, 2019, 241, 66-80.	20.2	14
114	Elucidating the role of NiMoS-USY during the hydrotreatment of Kraft lignin. Chemical Engineering Journal, 2022, 442, 136216.	12.7	14
115	The effect of rosin acid on hydrodeoxygenation of fatty acid. Journal of Energy Chemistry, 2019, 28, 85-94.	12.9	13
116	Insight into CO induced degradation mode of Pd/SSZ-13 in NOx adsorption and release: Experiment and modeling. Chemical Engineering Journal, 2022, 439, 135714.	12.7	13
117	The effect of Pt/Pd ratio on the oxidation activity and resistance to sulfur poisoning for Pt-Pd/BEA diesel oxidation catalysts with high siliceous content. Journal of Environmental Chemical Engineering, 2022, 10, 108217.	6.7	13
118	Characterization of Active Species in Cu-Beta Zeolite by Temperature-Programmed Reduction Mass Spectrometry (TPR-MS). Topics in Catalysis, 2013, 56, 201-204.	2.8	12
119	Effect of Thermal Treatment on Hydrogen Uptake and Characteristics of Ni-, Co-, and Mo-Containing Catalysts. Industrial & Engineering Chemistry Research, 2015, 54, 11511-11524.	3.7	12
120	Deactivation mechanisms of iron-exchanged zeolites for NH3-SCR applications. Catalysis Today, 2015, 258, 432-440.	4.4	12
121	Hydrothermal Aging of Pd/LTA Monolithic Catalyst for Complete CH4 Oxidation. Catalysts, 2020, 10, 517.	3.5	12
122	Regeneration of Cu/SAPO-34(MO) with H ₂ O only: too good to be true?. Catalysis Science and Technology, 2020, 10, 1529-1538.	4.1	12
123	Thermal annealing effects on hydrothermally synthesized unsupported MoS ₂ for enhanced deoxygenation of propylguaiacol and kraft lignin. Sustainable Energy and Fuels, 2021, 5, 5270-5286.	4.9	12
124	Comparative Study of SO2 and SO2/SO3 Poisoning and Regeneration of Cu/BEA and Cu/SSZ-13 for NH3 SCR. Emission Control Science and Technology, 2021, 7, 232-246.	1.5	12
125	Mechanistic Investigation of the Reduction of NOx over Pt- and Rh-Based LNT Catalysts. Catalysts, 2016, 6, 46.	3.5	11
126	The effect of soot on ammonium nitrate species and NO 2 selective catalytic reduction over Cu–zeolite catalyst-coated particulate filter. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150086.	3.4	11

#	Article	IF	CITATIONS
127	Influence of H2, CO, C3H6, and C7H8 as Reductants on DeNOx Behavior of Dual Monoliths for NOx Storage/Reduction Coupled with Selective Catalytic Reduction. Industrial & Engineering Chemistry Research, 2019, 58, 7001-7013.	3.7	11
128	Regeneration of water-deactivated Cu/SAPO-34(MO) with acids. Catalysis Science and Technology, 2020, 10, 1539-1550.	4.1	11
129	The Effect of Si/Al Ratio on the Oxidation and Sulfur Resistance of Beta Zeolite-Supported Pt and Pd as Diesel Oxidation Catalysts. ACS Engineering Au, 2022, 2, 27-45.	5.1	11
130	A kinetic study of NOx reduction over Pt/SiO2 model catalysts with hydrogen as the reducing agent. Topics in Catalysis, 2007, 42-43, 83-89.	2.8	10
131	Kinetic modeling of Feâ€BEA as NH ₃ â€SCR catalyst—effect of phosphorous. AICHE Journal, 2015, 61, 215-223.	3.6	10
132	Micro-calorimetric studies of NO2 adsorption on Pt/BaO-supported on γ-Al2O3 NOx storage and reduction (NSR) catalysts—Impact of CO2. Molecular Catalysis, 2017, 436, 43-52.	2.0	9
133	The Promotor and Poison Effects of the Inorganic Elements of Kraft Lignin during Hydrotreatment over NiMoS Catalyst. Catalysts, 2021, 11, 874.	3.5	9
134	Effect of DMSO on the catalytical production of 2,5-bis(hydoxymethyl)furan from 5-hydroxymethylfurfural over Ni/SiO2 catalysts. Reaction Chemistry and Engineering, 0, , .	3.7	9
135	A kinetic model of the hydrogen assisted selective catalytic reduction of NO with ammonia over Ag/Al ₂ O ₃ . AICHE Journal, 2013, 59, 4325-4333.	3.6	8
136	Effect of Enhanced Support Acidity on the Sulfate Storage and the Activity of Pt/γ-Al2O3 for NO Oxidation and Propylene Oxidation. Catalysis Letters, 2014, 144, 22-31.	2.6	8
137	Sulfur-tolerant BaO/ZrO ₂ /TiO ₂ /Al ₂ O ₃ quaternary mixed oxides for deNO _X catalysis. Catalysis Science and Technology, 2017, 7, 133-144.	4.1	8
138	Effects of Feed Gas Composition on Fresh and Aged TWC-Coated GPFs Loaded with Real Soot. Industrial & Engineering Chemistry Research, 2020, 59, 10790-10803.	3.7	8
139	Zeolite Beta Doped with La, Fe, and Pd as a Hydrocarbon Trap. Catalysts, 2020, 10, 173.	3.5	8
140	Advantages of High-Siliceous Zeolites in the Reactivity and Stability of Diesel Oxidation Catalysts. ACS Engineering Au, 2022, 2, 219-235.	5.1	8
141	Deactivation of phosphorus-poisoned Pd/SSZ-13 for the passive adsorption of NOx. Journal of Environmental Chemical Engineering, 2022, 10, 107608.	6.7	8
142	Detailed Characterization Studies of Vehicle and Rapid Aged Commercial Lean NO _{<i>x</i>} Trap Catalysts. Industrial & Engineering Chemistry Research, 2018, 57, 9362-9373.	3.7	7
143	Trade-off between NOx storage capacity and sulfur tolerance on Al2O3/ZrO2/TiO2–based DeNOx catalysts. Catalysis Today, 2019, 320, 152-164.	4.4	7
144	The Impact of Lanthanum and Zeolite Structure on Hydrocarbon Storage. Catalysts, 2021, 11, 635.	3.5	7

#	Article	IF	CITATIONS
145	Enhanced Low Temperature NO x Reduction Performance Over Bimetallic Pt/Rh–BaO Lean NO x Trap Catalysts. Topics in Catalysis, 2013, 56, 68-74.	2.8	6
146	Adsorption and Oxidation Investigations over Pt/Al2O3 Catalyst: A Microcalorimetric Study. Catalysts, 2016, 6, 73.	3.5	6
147	Gas-Phase Phosphorous Poisoning of a Pt/Ba/Al2O3 NOx Storage Catalyst. Catalysts, 2018, 8, 155.	3.5	6
148	Sulfur Poisoning Effects on Modern Lean NOx Trap Catalysts Components. Catalysts, 2019, 9, 492.	3.5	6
149	Deactivation of Cu/SSZ-13 NH3-SCR Catalyst by Exposure to CO, H2, and C3H6. Catalysts, 2019, 9, 929.	3.5	6
150	Impact of Different Synthesis Methods on the Low-Temperature Deactivation of Cu/SAPO-34 for NH3-SCR Reaction. Emission Control Science and Technology, 2021, 7, 198-209.	1.5	5
151	The Effect of Hydrogen on the Storage of NOx Over Silver, Platinum and Barium Containing NSR Catalysts. Catalysis Letters, 2014, 144, 1101-1112.	2.6	4
152	<i>In situ</i> DRIFT studies on N ₂ 0 formation over Cu-functionalized zeolites during ammonia-SCR. Catalysis Science and Technology, 2022, 12, 3921-3936.	4.1	4
153	NH3-SCR Activity of H-BEA and Fe-BEA After Potassium Exposure. Topics in Catalysis, 2015, 58, 1012-1018.	2.8	3
154	Characterization Method for Gas Flow Reactor Experiments—NH3 Adsorption on Vanadium-Based SCR Catalysts. Industrial & Engineering Chemistry Research, 2021, 60, 11399-11411.	3.7	3
155	Chemical poisoning by zinc and phosphorous of Pt/Ba/Al2O3 NOx storage catalysts. Applied Catalysis A: General, 2019, 571, 158-169.	4.3	2
156	Global Kinetic Model of a Three-Way-Catalyst-Coated Gasoline Particulate Filter: Catalytic Effects of Soot Accumulation. Industrial & amp; Engineering Chemistry Research, 2021, 60, 16899-16910.	3.7	2
157	Investigation of CO Deactivation of Passive NOx Adsorption on La Promoted Pd/BEA. Emission Control Science and Technology, 0, , 1.	1.5	0