Pengfei Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6370645/publications.pdf

Version: 2024-02-01

		759233	794594
19	1,034 citations	12	19
papers	citations	h-index	g-index
20	20	20	1520
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Occludin is a target of Src kinase and promotes lipid secretion by binding to BTN1a1 and XOR. PLoS Biology, 2022, 20, e3001518.	5.6	5
2	LGL1 binds to Integrin \hat{l}^21 and inhibits downstream signaling to promote epithelial branching in the mammary gland. Cell Reports, 2022, 38, 110375.	6.4	6
3	Born to Run? Diverse Modes of Epithelial Migration. Frontiers in Cell and Developmental Biology, 2021, 9, 704939.	3.7	15
4	3D inÂvitro culture system to study collective migration in mammary organoid epithelium. STAR Protocols, 2021, 2, 100778.	1,2	4
5	Asymmetric Stratification-Induced Polarity Loss and Coordinated Individual Cell Movements Drive Directional Migration of Vertebrate Epithelium. Cell Reports, 2020, 33, 108246.	6.4	4
6	Occludin protects secretory cells from ER stress by facilitating SNARE-dependent apical protein exocytosis. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4758-4769.	7.1	18
7	Mammary stem cells, where art thou?. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e357.	5.9	2
8	Quantitative Phosphoproteomics Reveals System-Wide Phosphorylation Network Altered by Spry in Mouse Mammary Stromal Fibroblasts. International Journal of Molecular Sciences, 2019, 20, 5400.	4.1	6
9	A 3D Fibroblast-Epithelium Co-culture Model for Understanding Microenvironmental Role in Branching Morphogenesis of the Mammary Gland. Methods in Molecular Biology, 2017, 1501, 217-231.	0.9	31
10	SPRY1 regulates mammary epithelial morphogenesis by modulating EGFR-dependent stromal paracrine signaling and ECM remodeling. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5731-40.	7.1	41
11	Modulation of Fibroblast Growth Factor Signaling Is Essential for Mammary Epithelial Morphogenesis. PLoS ONE, 2014, 9, e92735.	2.5	14
12	Stromal regulation of embryonic and postnatal mammary epithelial development and differentiation. Seminars in Cell and Developmental Biology, 2014, 25-26, 43-51.	5.0	37
13	FGF ligands of the postnatal mammary stroma regulate distinct aspects of epithelial morphogenesis. Development (Cambridge), 2014, 141, 3352-3362.	2.5	67
14	Genetic mosaic analysis reveals FGF receptor 2 function in terminal end buds during mammary gland branching morphogenesis. Developmental Biology, 2008, 321, 77-87.	2.0	151
15	Patterning Mechanisms of Branched Organs. Science, 2008, 322, 1506-1509.	12.6	169
16	The apical ectodermal ridge is a timer for generating distal limb progenitors. Development (Cambridge), 2008, 135, 1395-1405.	2.5	57
17	Hormonal and local control of mammary branching morphogenesis. Differentiation, 2006, 74, 365-381.	1.9	253
18	Comparative Mechanisms of Branching Morphogenesis in Diverse Systems. Journal of Mammary Gland Biology and Neoplasia, 2006, 11, 213-228.	2.7	67

#	Article	IF	CITATIONS
19	Increasing Fgf4 expression in the mouse limb bud causes polysyndactyly and rescues the skeletal defects that result from loss of Fgf8 function. Development (Cambridge), 2006, 133, 33-42.	2.5	87