Paula Baptista

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/637059/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel molecular diagnostic method for the gut content analysis of Philaenus DNA. Scientific Reports, 2022, 12, 492.	1.6	2
2	Olive Oil Sensory Analysis as a Tool to Preserve and Valorize the Heritage of Centenarian Olive Trees. Plants, 2022, 11, 257.	1.6	5
3	Pest categorisation of Maconellicoccus hirsutus. EFSA Journal, 2022, 20, e07024.	0.9	2
4	Pest categorisation of Arboridia kakogawana. EFSA Journal, 2022, 20, e07023.	0.9	5
5	Pest categorisation of Fusarium oxysporum f. sp. cubense Tropical Race 4. EFSA Journal, 2022, 20, e07092.	0.9	4
6	Pest categorisation of Thecodiplosis japonensis. EFSA Journal, 2022, 20, e07088.	0.9	0
7	Pest categorisation of Bagrada hilaris. EFSA Journal, 2022, 20, e07091.	0.9	Ο
8	Commodity risk assessment of bonsai plants from China consisting of Pinus parviflora grafted on Pinus thunbergii. EFSA Journal, 2022, 20, e07077.	0.9	11
9	Olive Fungal Epiphytic Communities Are Affected by Their Maturation Stage. Microorganisms, 2022, 10, 376.	1.6	5
10	Phylogenetic analysis and genetic diversity of the xylariaceous ascomycete BiscogniauxiaÂmediterranea from cork oak forests in different bioclimates. Scientific Reports, 2022, 12, 2646.	1.6	3
11	Biocontrol Ability and Production of Volatile Organic Compounds as a Potential Mechanism of Action of Olive Endophytes against Colletotrichum acutatum. Microorganisms, 2022, 10, 571.	1.6	10
12	Olfactory responses to volatile organic compounds and movement parameters of <i>Philaenus spumarius</i> and <i>Cicadella viridis</i> . Journal of Applied Entomology, 2022, 146, 486-497.	0.8	4
13	Mediterranean woody agroecosystems in a warming and drier climate: the importance of knowledge-based management. Flora: Morphology, Distribution, Functional Ecology of Plants, 2022, 291, 152070.	0.6	4
14	Distinguishing Allies from Enemies—A Way for a New Green Revolution. Microorganisms, 2022, 10, 1048.	1.6	1
15	Endophytic fungal community succession in reproductive organs of two olive tree cultivars with contrasting anthracnose susceptibilities. Fungal Ecology, 2021, 49, 101003.	0.7	6
16	Assessment of indoor air quality in geriatric environments of southwestern Europe. Aerobiologia, 2021, 37, 139-153.	0.7	11
17	Fatty Acid Composition from Olive Oils of Portuguese Centenarian Trees Is Highly Dependent on Olive Cultivar and Crop Year. Foods, 2021, 10, 496.	1.9	14
18	In vitro interactions between the ectomycorrhizal Pisolithus tinctorius and the saprotroph Hypholoma fasciculare fungi: morphological aspects and volatile production. Mycology, 2021, 12, 216-229.	2.0	3

#	Article	IF	CITATIONS
19	Bacteria could help ectomycorrhizae establishment under climate variations. Mycorrhiza, 2021, 31, 395-401.	1.3	7
20	Illuminating Olea europaea L. endophyte fungal community. Microbiological Research, 2021, 245, 126693.	2.5	22
21	Filamentous fungi as biocontrol agents in olive (Olea europaea L.) diseases: Mycorrhizal and endophytic fungi. Crop Protection, 2021, 146, 105672.	1.0	30
22	Olive oil characteristics of eleven cultivars produced in a high-density grove in Valladolid province (Spain). European Food Research and Technology, 2021, 247, 3113-3122.	1.6	7
23	Cork Oak Forests Soil Bacteria: Potential for Sustainable Agroforest Production. Microorganisms, 2021, 9, 1973.	1.6	5
24	Endophytic fungal community structure in olive orchards with high and low incidence of olive anthracnose. Scientific Reports, 2021, 11, 689.	1.6	12
25	Fruit-Associated Endophytes from Olive Cultivars with Different Levels of Resistance to Fruit Fly and Their Relationship with Pest Infestation. Biology and Life Sciences Forum, 2021, 4, 9.	0.6	0
26	Pest categorisation of Xylotrechus chinensis. EFSA Journal, 2021, 19, e07022.	0.9	2
27	Seeking for sensory differentiated olive oils? The urge to preserve old autochthonous olive cultivars. Food Research International, 2020, 128, 108759.	2.9	24
28	Chemical Characterization of Oleaster, Olea europaea var. sylvestris (Mill.) Lehr., Oils from Different Locations of Northeast Portugal. Applied Sciences (Switzerland), 2020, 10, 6414.	1.3	6
29	Biological and Molecular Control Tools in Plant Defense. Progress in Biological Control, 2020, , 3-43.	0.5	2
30	Cork Oak Endophytic Fungi as Potential Biocontrol Agents against Biscogniauxia mediterranea and Diplodia corticola. Journal of Fungi (Basel, Switzerland), 2020, 6, 287.	1.5	12
31	Populations and Host/Non-Host Plants of Spittlebugs Nymphs in Olive Orchards from Northeastern Portugal. Insects, 2020, 11, 720.	1.0	12
32	Screening the Olive Tree Phyllosphere: Search and Find Potential Antagonists Against Pseudomonas savastanoi pv. savastanoi. Frontiers in Microbiology, 2020, 11, 2051.	1.5	7
33	Differences in the Endophytic Microbiome of Olive Cultivars Infected by Xylella fastidiosa across Seasons. Pathogens, 2020, 9, 723.	1.2	39
34	GxE Effects on Tocopherol Composition of Oils from Very Old and Genetically Diverse Olive Trees. JAOCS, Journal of the American Oil Chemists' Society, 2020, 97, 497-507.	0.8	4
35	A Guild-Based Protocol to Target Potential Natural Enemies of Philaenus spumarius (Hemiptera:) Tj ETQq1 1 0.784 Olive Grove. Insects, 2020, 11, 100.	4314 rgBT 1.0	Overlock
36	Impact of plant genotype and plant habitat in shaping bacterial pathobiome: a comparative study in olive tree. Scientific Reports, 2020, 10, 3475.	1.6	23

#	Article	IF	CITATIONS
37	Epiphytic and Endophytic Bacteria on Olive Tree Phyllosphere: Exploring Tissue and Cultivar Effect. Microbial Ecology, 2020, 80, 145-157.	1.4	53
38	lsolation and genetic characterization of bacteria associated with Philaenus spumarius for the control of Xylella fastidiosa . , 2020, 4, .		0
39	Promising Bacteria for Glyphosate Degradation. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
40	Understanding Fungal Communities of Olive Tree Leaves for Application to Climate Change Adaptation. Biology and Life Sciences Forum, 2020, 4, .	0.6	1
41	Characterization of Olive-Associated Fungi of Cultivars with Different Levels of Resistance to Anthracnose. Biology and Life Sciences Forum, 2020, 4, .	0.6	2
42	Olive Anthracnose and Its Management by Fungal Endophytes: An Overview. , 2019, , 253-269.		0
43	The Influence of Endophytes on Cork Oak Forests Under a Changing Climate. , 2019, , 250-274.		1
44	Climatic impacts on the bacterial community profiles of cork oak soils. Applied Soil Ecology, 2019, 143, 89-97.	2.1	15
45	Nutritional and Nutraceutical Composition of Pansies (<i>Viola × wittrockiana</i>) During Flowering. Journal of Food Science, 2019, 84, 490-498.	1.5	20
46	Bacterial disease induced changes in fungal communities of olive tree twigs depend on host genotype. Scientific Reports, 2019, 9, 5882.	1.6	30
47	Ancient olive trees as a source of olive oils rich in phenolic compounds. Food Chemistry, 2019, 276, 231-239.	4.2	18
48	Modeling the interactions among phythopatogens and phyllosphere microorganisms for the biological disease control of Olea europaea L. Mathematical Biosciences, 2019, 308, 42-58.	0.9	3
49	Endophytic and Epiphytic Phyllosphere Fungal Communities Are Shaped by Different Environmental Factors in a Mediterranean Ecosystem. Microbial Ecology, 2018, 76, 668-679.	1.4	105
50	Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes. Mycorrhiza, 2018, 28, 357-368.	1.3	19
51	Effect of olive trees density on the quality and composition of olive oil from cv. Arbequina. Scientia Horticulturae, 2018, 238, 222-233.	1.7	30
52	Detection of Bactrocera oleae (Diptera: Tephritidae) DNA in the gut of the soil species Pseudoophonus rufipes (Coleoptera: Carabidae). Spanish Journal of Agricultural Research, 2018, 16, e1007.	0.3	3
53	Antimicrobial activity of endophytic fungi from olive tree leaves. World Journal of Microbiology and Biotechnology, 2017, 33, 46.	1.7	58
54	Fungal community in olive fruits of cultivars with different susceptibilities to anthracnose and selection of isolates to be used as biocontrol agents. Biological Control, 2017, 110, 1-9.	1.4	39

#	Article	IF	CITATIONS
55	Mycorrhization of Fagaceae Forests Within Mediterranean Ecosystems. , 2017, , 75-97.		3

56 Impact of a natural soil salinity gradient on fungal endophytes in wild barley (Hordeum maritimum) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

57	Fungal endophyte communities in above- and belowground olive tree organs and the effect of season and geographic location on their structures. Fungal Ecology, 2016, 20, 193-201.	0.7	71
58	Identification of leaf volatiles from olive (Olea europaea) and their possible role in the ovipositional preferences of olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae). Phytochemistry, 2016, 121, 11-19.	1.4	34
59	Soil <scp>DNA</scp> pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environmental Microbiology Reports, 2015, 7, 946-954.	1.0	26
60	Olive Volatiles from Portuguese Cultivars Cobrançosa, Madural and Verdeal Transmontana: Role in Oviposition Preference of Bactrocera oleae (Rossi) (Diptera: Tephritidae). PLoS ONE, 2015, 10, e0125070.	1.1	39
61	Co-ingestion of amatoxins and isoxazoles-containing mushrooms and successful treatment: A case report. Toxicon, 2015, 103, 55-59.	0.8	14
62	Determination of amatoxins and phallotoxins in <i>Amanita phalloides</i> mushrooms from northeastern Portugal by HPLC-DAD-MS. Mycologia, 2015, 107, 679-687.	0.8	26
63	Physico-chemical characteristics of olive leaves and fruits and their relation with Bactrocera oleae (Rossi) cultivar oviposition preference. Scientia Horticulturae, 2015, 194, 208-214.	1.7	19
64	Revalorization of spent coffee residues by a direct agronomic approach. Food Research International, 2015, 73, 190-196.	2.9	52
65	YEAST dynamics during the natural fermentation process of table olives (Negrinha de Freixo cv.). Food Microbiology, 2015, 46, 582-586.	2.1	34
66	Plant-mediated effects on entomopathogenic fungi: how the olive tree influences fungal enemies of the olive moth, Prays oleae. BioControl, 2015, 60, 93-102.	0.9	1
67	Antioxidant activity and bioactive compounds of lettuce improved by espresso coffee residues. Food Chemistry, 2014, 145, 95-101.	4.2	34
68	Improvement of vegetables elemental quality by espresso coffee residues. Food Chemistry, 2014, 148, 294-299.	4.2	42
69	Oxidative stress response of <i>Beauveria bassiana</i> to Bordeaux mixture and its influence on fungus growth and development. Pest Management Science, 2014, 70, 1220-1227.	1.7	20
70	Non-targeted and targeted analysis of wild toxic and edible mushrooms using gas chromatography–ion trap mass spectrometry. Talanta, 2014, 118, 292-303.	2.9	30
71	Volatile biomarkers for wild mushrooms species discrimination. Food Research International, 2013, 54, 186-194.	2.9	73
72	Application of response surface methodology for obtaining lettuce (Lactuca sativa L.) by-products extracts with high antioxidative properties. Industrial Crops and Products, 2013, 44, 622-629.	2.5	12

#	Article	IF	CITATIONS
73	A new effective assay to detect antimicrobial activity of filamentous fungi. Microbiological Research, 2013, 168, 1-5.	2.5	26
74	Effect of soil tillage on natural occurrence of fungal entomopathogens associated to Prays oleae Bern Scientia Horticulturae, 2013, 159, 190-196.	1.7	12
75	Carotenoids of Lettuce (Lactuca sativa L.) Grown on Soil Enriched with Spent Coffee Grounds. Molecules, 2012, 17, 1535-1547.	1.7	80
76	Characterization of Ficus carica L. cultivars by DNA and secondary metabolite analysis: Is genetic diversity reflected in the chemical composition?. Food Research International, 2012, 49, 710-719.	2.9	27
77	Genetic diversity of Portuguese Arbutus unedo L. populations using leaf traits and molecular markers: An approach for conservation purposes. Scientia Horticulturae, 2012, 142, 57-67.	1.7	19
78	Guttation droplets of the edible mushroom Suillus bovinus as a new source of natural antioxidants. Scientia Horticulturae, 2012, 148, 89-92.	1.7	2
79	Espresso Coffee Residues: A Valuable Source of Unextracted Compounds. Journal of Agricultural and Food Chemistry, 2012, 60, 7777-7784.	2.4	151
80	Tolerance and Bioaccumulation of Copper by the Entomopathogen Beauveria bassiana (BalsCriv.) Vuill. Exposed to Various Copper-Based Fungicides. Bulletin of Environmental Contamination and Toxicology, 2012, 89, 53-60.	1.3	9
81	Fungal Diversity Associated to the Olive Moth, Prays Oleae Bernard: A Survey for Potential Entomopathogenic Fungi. Microbial Ecology, 2012, 63, 964-974.	1.4	35
82	Arbutus unedo L. leaves as source of phytochemicals with bioactive properties. Industrial Crops and Products, 2012, 37, 473-478.	2.5	50
83	Effect of competitive interactions between ectomycorrhizal and saprotrophic fungi on Castanea sativa performance. Mycorrhiza, 2012, 22, 41-49.	1.3	17
84	Optimization of DNA Extraction for RAPD and ISSR Analysis of Arbutus unedo L. Leaves. International Journal of Molecular Sciences, 2011, 12, 4156-4164.	1.8	17
85	Influence of strawberry tree (Arbutus unedo L.) fruit ripening stage on chemical composition and antioxidant activity. Food Research International, 2011, 44, 1401-1407.	2.9	65
86	Comparative antihemolytic and radical scavenging activities of strawberry tree (Arbutus unedo L.) leaf and fruit. Food and Chemical Toxicology, 2011, 49, 2285-2291.	1.8	106
87	Signaling in Ectomycorrhizal Symbiosis Establishment. Soil Biology, 2011, , 157-175.	0.6	3
88	Viability of Beauveria bassiana isolates after storage under several preservation methods. Annals of Microbiology, 2011, 61, 339-344.	1.1	17
89	Volatile profile of Arbutus unedo L. fruits through ripening stage. Food Chemistry, 2011, 128, 667-673.	4.2	27
90	Chemometric classification of several olive cultivars from TrÃis-os-Montes region (northeast of) Tj ETQq0 0 0 rgBT	/Overlock 1.8	≥ 10 Tf 50 67 25

105, 65-73.

#	Article	IF	CITATIONS
91	Diversity and fruiting pattern of macrofungi associated with chestnut (Castanea sativa) in the Trás-os-Montes region (Northeast Portugal). Fungal Ecology, 2010, 3, 9-19.	0.7	51
92	Fatty acid composition of wild edible mushrooms species: A comparative study. Microchemical Journal, 2009, 93, 29-35.	2.3	113
93	Phenolic acids determination by HPLC–DAD–ESI/MS in sixteen different Portuguese wild mushrooms species. Food and Chemical Toxicology, 2009, 47, 1076-1079.	1.8	228
94	Scavenging capacity of strawberry tree (Arbutus unedo L.) leaves on free radicals. Food and Chemical Toxicology, 2009, 47, 1507-1511.	1.8	70
95	Tolerance and Stress Response of Macrolepiota procera to Nickel. Journal of Agricultural and Food Chemistry, 2009, 57, 7145-7152.	2.4	35
96	Comparative study of phytochemicals and antioxidant potential of wild edible mushroom caps and stipes. Food Chemistry, 2008, 110, 47-56.	4.2	88
97	Optimization of the determination of tocopherols in Agaricus sp. edible mushrooms by a normal phase liquid chromatographic method. Food Chemistry, 2008, 110, 1046-1050.	4.2	54
98	Antioxidant activity of Agaricus sp. mushrooms by chemical, biochemical and electrochemical assays. Food Chemistry, 2008, 111, 61-66.	4.2	205
99	Comparative Study on Free Amino Acid Composition of Wild Edible Mushroom Species. Journal of Agricultural and Food Chemistry, 2008, 56, 10973-10979.	2.4	53
100	Chemical Composition and Biological Properties of Portuguese Wild Mushrooms: A Comprehensive Study. Journal of Agricultural and Food Chemistry, 2008, 56, 3856-3862.	2.4	198
101	Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food and Chemical Toxicology, 2008, 46, 2742-2747.	1.8	356
102	Correlation between the Pattern Volatiles and the Overall Aroma of Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2008, 56, 1704-1712.	2.4	118
103	<i>Leucopaxillus giganteus</i> Mycelium: Effect of Nitrogen Source on Organic Acids and Alkaloids . Journal of Agricultural and Food Chemistry, 2008, 56, 4769-4774.	2.4	27
104	Screening of Antioxidant Compounds During Sprouting of Brassica oleracea L. var. costata DC. Combinatorial Chemistry and High Throughput Screening, 2007, 10, 377-386.	0.6	30
105	Effect of Lactarius piperatus fruiting body maturity stage on antioxidant activity measured by several biochemical assays. Food and Chemical Toxicology, 2007, 45, 1731-1737.	1.8	224
106	Phenolic compounds, organic acids profiles and antioxidative properties of beefsteak fungus (Fistulina hepatica). Food and Chemical Toxicology, 2007, 45, 1805-1813.	1.8	101
107	Effects of Conservation Treatment and Cooking on the Chemical Composition and Antioxidant Activity of Portuguese Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55, 4781-4788.	2.4	150
108	Effect of Fruiting Body Maturity Stage on Chemical Composition and Antimicrobial Activity of <i>Lactarius</i> sp. Mushrooms. Journal of Agricultural and Food Chemistry, 2007, 55, 8766-8771.	2.4	89

#	Article	IF	CITATIONS
109	Validation of an Electrothermal Atomization Atomic Absorption Spectrometry Method for Quantification of Total Chromium and Chromium(VI) in Wild Mushrooms and Underlying Soils. Journal of Agricultural and Food Chemistry, 2007, 55, 7192-7198.	2.4	31
110	Fatty acid and sugar compositions, and nutritional value of five wild edible mushrooms from Northeast Portugal. Food Chemistry, 2007, 105, 140-145.	4.2	207
111	Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chemistry, 2007, 100, 1511-1516.	4.2	528
112	Total phenols, ascorbic acid, β-carotene and lycopene in Portuguese wild edible mushrooms and their antioxidant activities. Food Chemistry, 2007, 103, 413-419.	4.2	409
113	Antimicrobial activity and bioactive compounds of Portuguese wild edible mushrooms methanolic extracts. European Food Research and Technology, 2007, 225, 151-156.	1.6	189
114	Involvement of reactive oxygen species during early stages of ectomycorrhiza establishment between Castanea sativa and Pisolithus tinctorius. Mycorrhiza, 2007, 17, 185-193.	1.3	76
115	Contents of Carboxylic Acids and Two Phenolics and Antioxidant Activity of Dried Portuguese Wild Edible Mushrooms. Journal of Agricultural and Food Chemistry, 2006, 54, 8530-8537.	2.4	84
116	Quantitation of Nine Organic Acids in Wild Mushrooms. Journal of Agricultural and Food Chemistry, 2005, 53, 3626-3630.	2.4	78
117	Effect of the Conservation Procedure on the Contents of Phenolic Compounds and Organic Acids in Chanterelle (Cantharellus cibarius) Mushroom. Journal of Agricultural and Food Chemistry, 2005, 53, 4925-4931.	2.4	86
118	Presence and distribution of the African citrus psyllid in São Tomé island. Journal of Applied Entomology, 0, , .	0.8	0