Enrico Spacone

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6369594/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modelling and Seismic Response Analysis of Italian Pre-Code and Low-Code Reinforced Concrete Buildings. Part I: Bare Frames. Journal of Earthquake Engineering, 2023, 27, 1482-1513.	1.4	12
2	Modelling and Seismic Response Analysis of Italian Pre-Code and Low-Code Reinforced Concrete Buildings. Part II: Infilled Frames. Journal of Earthquake Engineering, 2023, 27, 1534-1564.	1.4	10
3	On the reliability of the equivalent frame models: the case study of the permanently monitored Pizzoli's town hall. Bulletin of Earthquake Engineering, 2022, 20, 2187-2217.	2.3	13
4	A simplified model for seismic safety assessment of reinforced concrete buildings: framework and application to a 3-storey plan-irregular moment resisting frame. Engineering Structures, 2022, 250, 113348.	2.6	10
5	Nonlinear finite and discrete element simulations of multi-storey masonry walls. Bulletin of Earthquake Engineering, 2022, 20, 2219-2244.	2.3	16
6	Validation of non-linear equivalent-frame models for irregular masonry walls. Engineering Structures, 2022, 253, 113755.	2.6	9
7	A Discrete-Event Simulation Model of Hospital Patient Flow Following Major Earthquakes. International Journal of Disaster Risk Reduction, 2022, 71, 102825.	1.8	9
8	Experimental and Numerical Mechanical Characterization of Unreinforced and Reinforced Masonry Elements with Weak Air Lime Mortar Joints. Sustainability, 2022, 14, 3990.	1.6	3
9	Engineering demand parameters for the definition of the collapse limit state for code-conforming reinforced concrete buildings. Engineering Structures, 2022, 266, 114612.	2.6	2
10	Structural Survey and Empirical Seismic Vulnerability Assessment of Dwellings in the Historical Centre of Cusco, Peru. International Journal of Architectural Heritage, 2021, 15, 1395-1423.	1.7	17
11	A 2D beamâ€column joint macroâ€element for the nonlinear analysis of RC frames. Earthquake Engineering and Structural Dynamics, 2021, 50, 935-954.	2.5	3
12	A CARTIS-based method for the rapid seismic vulnerability assessment of minor Italian historical centres. International Journal of Disaster Risk Reduction, 2021, 63, 102478.	1.8	23
13	An automatic procedure for deriving building portfolios using the Italian "CARTIS―online database. Structures, 2021, 34, 2974-2986.	1.7	11
14	Seismic Analysis by Macroelements of Fujian Hakka Tulous, Chinese Circular Earth Constructions Listed in the UNESCO World Heritage List. International Journal of Architectural Heritage, 2020, 14, 1551-1566.	1.7	10
15	Effects of the vertical seismic component on seismic performance of an unreinforced masonry structures. Bulletin of Earthquake Engineering, 2020, 18, 1635-1656.	2.3	26
16	A Multilevel Approach for the Cultural Heritage Vulnerability and Strengthening: Application to the Melfi Castle. Buildings, 2020, 10, 158.	1.4	7
17	New formulation of ductility reduction factor of RC frame-wall dual systems for design under earthquake loadings. Soil Dynamics and Earthquake Engineering, 2020, 138, 106279.	1.9	6
18	Assessing community resilience, housing recovery and impact of mitigation strategies at the urban scale: a case study after the 2012 Northern Italy Earthquake. Bulletin of Earthquake Engineering, 2020, 18, 6039-6074.	2.3	22

#	Article	IF	CITATIONS
19	Performance of torsionally eccentric RC wall frame buildings designed to DDBD under bi-directional seismic excitation. Bulletin of Earthquake Engineering, 2020, 18, 3137-3165.	2.3	7
20	Seismic Vulnerability of Buildings in Historic Centers: From the "Urban―to the "Aggregate―Scale. Frontiers in Built Environment, 2019, 5, .	1.2	26
21	Nonlinear analysis of masonry structures using fiberâ€section line elements. Earthquake Engineering and Structural Dynamics, 2019, 48, 1345-1364.	2.5	14
22	Hospital treatment capacity in case of seismic scenario in the Lima Metropolitan area, Peru. International Journal of Disaster Risk Reduction, 2019, 38, 101196.	1.8	6
23	Cyclic Analyses of Reinforced Concrete Masonry Panels Using a Force-Based Frame Element. Journal of Structural Engineering, 2019, 145, .	1.7	8
24	The path towards buildings energy efficiency in South American countries. Sustainable Cities and Society, 2019, 44, 646-665.	5.1	26
25	Ductility reduction factor formulations for seismic design of RC wall and frame structures. Engineering Structures, 2019, 178, 102-115.	2.6	8
26	Seismic response of RC buildings during the Mw 6.0 August 24, 2016 Central Italy earthquake: the Amatrice case study. Bulletin of Earthquake Engineering, 2019, 17, 5631-5654.	2.3	71
27	An Extensive Survey of the Historic Center of Cusco for Its Seismic Vulnerability Assessment. RILEM Bookseries, 2019, , 1257-1267.	0.2	5
28	A Probability-based Approach for the Definition of the Expected Seismic Damage Evaluated with Non-linear Time-History Analyses. Journal of Earthquake Engineering, 2019, 23, 261-283.	1.4	7
29	DISCUSSION ON DATA RECORDED BY THE ITALIAN STRUCTURAL SEISMIC MONITORING NETWORK ON THREE MASONRY STRUCTURES HIT BY THE 2016-2017 CENTRAL ITALY EARTHQUAKE. , 2019, , .		12
30	Graphic dynamic prediction of polarized earthquake incidence response for plan-irregular single story buildings. Bulletin of Earthquake Engineering, 2018, 16, 4971-5001.	2.3	8
31	Effects of bond-slip and masonry infills interaction on seismic performance of older R/C frame structures. Soil Dynamics and Earthquake Engineering, 2018, 109, 251-265.	1.9	11
32	Modeling and Seismic Response Analysis of Italian Code-Conforming Reinforced Concrete Buildings. Journal of Earthquake Engineering, 2018, 22, 105-139.	1.4	50
33	Collapse limit state definition for seismic assessment of code-conforming RC buildings. International Journal of Advanced Structural Engineering, 2018, 10, 325-337.	1.3	8
34	Numerical investigation of non-linear equivalent-frame models for regular masonry walls. Engineering Structures, 2018, 173, 512-529.	2.6	38
35	Performance-based Seismic Risk Assessment of Urban Systems. International Journal of Architectural Heritage, 2018, 12, 1131-1149.	1.7	32
36	Seismic vulnerability assessment of historic centers: description of a predictive method and application to the case study of scanno (Abruzzi, Italy). International Journal of Architectural Heritage, 2018, 12, 1171-1195.	1.7	41

#	Article	IF	CITATIONS
37	Performance-Based Urban Planning: Framework and L'Aquila Historic City Center Case Study. International Journal of Architectural Heritage, 2017, , 1-14.	1.7	4
38	Analysis of the performance in the linear field of Equivalent-Frame Models for regular and irregular masonry walls. Engineering Structures, 2017, 145, 190-210.	2.6	24
39	Micro-scale continuous and discrete numerical models for nonlinear analysis of masonry shear walls. Construction and Building Materials, 2017, 149, 296-314.	3.2	92
40	Predictive model for the seismic vulnerability assessment of small historic centres: Application to the inner Abruzzi Region in Italy. Engineering Structures, 2017, 153, 81-96.	2.6	72
41	Mohr Circle-based Graphical Vibration Analysis and Earthquake Response of Asymmetric Systems. Procedia Engineering, 2017, 199, 128-133.	1.2	5
42	Multiscale computational first order homogenization of thick shells for the analysis of out-of-plane loaded masonry walls. Computer Methods in Applied Mechanics and Engineering, 2017, 315, 273-301.	3.4	56
43	Damage Reconnaissance of Unreinforced Masonry Bearing Wall Buildings after the 2015 Gorkha, Nepal, Earthquake. Earthquake Spectra, 2017, 33, 243-273.	1.6	55
44	RINTC PROJECT: NONLINEAR DYNAMIC ANALYSES OF ITALIAN CODE-CONFORMING REINFORCED CONCRETE BUILDINGS FOR RISK OF COLLAPSE ASSESSMENT. , 2017, , .		11
45	Seismic performance of older R/C frame structures accounting for infills-induced shear failure of columns. Engineering Structures, 2016, 122, 1-13.	2.6	21
46	Seismic safety assessment of existing masonry infill structures in Nepal. Earthquake Engineering and Engineering Vibration, 2016, 15, 251-268.	1.1	17
47	Earthquake loss estimation for the Kathmandu Valley. Bulletin of Earthquake Engineering, 2016, 14, 59-88.	2.3	39
48	Regularization of first order computational homogenization for multiscale analysis of masonry structures. Computational Mechanics, 2016, 57, 257-276.	2.2	63
49	Advanced frame element for seismic analysis of masonry structures: model formulation and validation. Earthquake Engineering and Structural Dynamics, 2015, 44, 2489-2506.	2.5	69
50	Nonlinear Lattice-Based Model for Cyclic Analysis of Reinforced Normal and High-Strength Concrete Columns. Advances in Structural Engineering, 2015, 18, 1017-1027.	1.2	1
51	Seismic risk assessment and hazard mapping in Nepal. Natural Hazards, 2015, 78, 583-602.	1.6	74
52	Assessment of seismic strengthening solutions for existing low-rise RC buildings in Nepal. Earthquake and Structures, 2015, 8, 511-539.	1.0	18
53	Seismic response of current RC buildings in Kathmandu Valley. Structural Engineering and Mechanics, 2015, 53, 791-818.	1.0	29
54	GRAPHICAL DYNAMIC TRENDS FOR EARTHQUAKE INCIDENCE RESPONSE OF PLAN-ASYMMETRIC SYSTEMS. ,		4

2015,,.

#	Article	IF	CITATIONS
55	SIGNIFICANCE OF EARTHQUAKE INCIDENCE ON RESPONSE OF PLAN-IRREGULAR INFILLED R/C BUILDINGS. , 2015, , .		4
56	Nonlinear Dynamic Analysis of a Full-Scale Unreinforced Adobe Model. Earthquake Spectra, 2014, 30, 1643-1661.	1.6	25
57	Design Procedures of Reinforced Concrete Framed Buildings in Nepal and its Impact on Seismic Safety. Advances in Structural Engineering, 2014, 17, 1419-1442.	1.2	10
58	Response reduction factor of irregular RC buildings in Kathmandu valley. Earthquake Engineering and Engineering Vibration, 2014, 13, 455-470.	1.1	26
59	Unification of Mixed Euler-Bernoulli-Von Karman Planar Frame Model and Corotational Approach. Mechanics Based Design of Structures and Machines, 2014, 42, 419-441.	3.4	3
60	Seismic Demand Sensitivity of Reinforced Concrete Structures to Ground Motion Selection and Modification Methods. Earthquake Spectra, 2014, 30, 1449-1465.	1.6	9
61	Seismic response of current RC buildings in Nepal: A comparative analysis of different design/construction. Engineering Structures, 2013, 49, 284-294.	2.6	42
62	Expected ground motion at the historical site of Poggio Picenze, Central Italy, with reference to current Italian building code. Engineering Geology, 2013, 166, 100-115.	2.9	12
63	Nonlinear Winkler-based beam element with improved displacement shape functions. KSCE Journal of Civil Engineering, 2013, 17, 192-201.	0.9	7
64	Probabilistic seismic response analysis of a 3-D reinforced concrete building. Structural Safety, 2013, 44, 11-27.	2.8	33
65	Perceptions of Decision-Making Roles and Priorities that Affect Rebuilding after Disaster: The Example of L'Aquila, Italy. Earthquake Spectra, 2013, 29, 843-868.	1.6	15
66	The variability of deformation demand with ground motion intensity. Probabilistic Engineering Mechanics, 2012, 28, 59-65.	1.3	13
67	Response of reinforced concrete piles including soil–pile interaction effects. Engineering Structures, 2009, 31, 1976-1986.	2.6	21
68	Seismic Assessment of Râ^•C Building Structure through Nonlinear Probabilistic Analysis with High-performance Computing. AlP Conference Proceedings, 2008, , .	0.3	4
69	Experimental and nonlinear finite element studies of RC beams strengthened with FRP plates. Composites Part B: Engineering, 2007, 38, 277-288.	5.9	102
70	Frame element with lateral deformable supports: Formulations and numerical validation. Computers and Structures, 2006, 84, 942-954.	2.4	11
71	Analytical Model of Concrete-Filled Fiber-Reinforced Polymer Tubes based on Multiaxial Constitutive Laws. Journal of Structural Engineering, 2005, 131, 1426-1433.	1.7	20
72	Failure Mode Analyses of Reinforced Concrete Beams Strengthened in Flexure with Externally Bonded Fiber-Reinforced Polymers. Journal of Composites for Construction, 2004, 8, 123-131.	1.7	71

#	Article	IF	CITATIONS
73	Analysis of Test Specimens for Cohesive Near-Bond Failure of Fiber-Reinforced Polymer-Plated Concrete. Journal of Composites for Construction, 2004, 8, 528-538.	1.7	38
74	Finite element response sensitivity analysis using force-based frame models. International Journal for Numerical Methods in Engineering, 2004, 59, 1781-1820.	1.5	53
75	Simplified stochastic modeling and simulation of unidirectional fiber reinforced composites. Probabilistic Engineering Mechanics, 2004, 19, 33-40.	1.3	13
76	Nonlinear Analysis of Steel-Concrete Composite Structures: State of the Art. Journal of Structural Engineering, 2004, 130, 159-168.	1.7	192
77	Effects of reinforcement slippage on the non-linear response under cyclic loadings of RC frame structures. Earthquake Engineering and Structural Dynamics, 2003, 32, 2407-2424.	2.5	21
78	Closure to "Reinforced Concrete Frame Element with Bond Interfaces. II: State Determination and Numerical Validation―by Sucharat Limkatanyu and Enrico Spacone. Journal of Structural Engineering, 2003, 129, 1430-1430.	1.7	0
79	DEBONDING FAILURE OF RC STRUCTURAL MEMBERS STRENGTHENED WITH FRP LAMINATES. , 2003, , .		3
80	PARAMETRIC STUDIES OF RC BEAMS STRENGTHENED IN FLEXURE WITH EXTERNALLY BONDED FRP. , 2003, , .		1
81	Reinforced Concrete Frame Element with Bond Interfaces. I: Displacement-Based, Force-Based, and Mixed Formulations. Journal of Structural Engineering, 2002, 128, 346-355.	1.7	56
82	Reinforced Concrete Frame Element with Bond Interfaces. II: State Determinations and Numerical Validation. Journal of Structural Engineering, 2002, 128, 356-364.	1.7	18
83	Three-dimensional finite element analyses of reinforced concrete columns. Computers and Structures, 2002, 80, 199-212.	2.4	52
84	Role of Bond in RC Beams Strengthened with Steel and FRP Plates. Journal of Structural Engineering, 2001, 127, 1445-1452.	1.7	54
85	Localization Issues in Force-Based Frame Elements. Journal of Structural Engineering, 2001, 127, 1257-1265.	1.7	267
86	New light on performance of short and slender reinforced concrete columns under random loads. Engineering Structures, 2001, 23, 147-157.	2.6	11
87	A 3D hypoplastic model for cyclic analysis of concrete structures. Engineering Structures, 2001, 23, 333-342.	2.6	43
88	Finite element formulations of one-dimensional elements with bond-slip. Engineering Structures, 2001, 23, 815-826.	2.6	77
89	Analysis of R/C Beams Strengthened with FRP Plates. , 2001, , 1.		1
90	Analysis of Steel-Concrete Composite Frames with Bond-Slip. Journal of Structural Engineering, 2001, 127, 1243-1250.	1.7	55

#	ARTICLE	IF	CITATIONS
91	Failure analysis of R/C columns using a triaxial concrete model. Computers and Structures, 2000, 77, 423-440.	2.4	21
92	Nonlinear Pushover Analysis of RC Structures. , 2000, , 1.		11
93	Reinforced Concrete Fiber Beam Element with Bond-Slip. Journal of Structural Engineering, 2000, 126, 654-661.	1.7	139
94	Nonlinear Analysis of Composite Beams with Deformable Shear Connectors. Journal of Structural Engineering, 1998, 124, 1148-1158.	1.7	126
95	Finite Element for Anchored Bars under Cyclic Load Reversals. Journal of Structural Engineering, 1997, 123, 614-623.	1.7	67
96	Mixed formulation of nonlinear beam finite element. Computers and Structures, 1996, 58, 71-83.	2.4	244
97	FIBRE BEAM-COLUMN MODEL FOR NON-LINEAR ANALYSIS OF R/C FRAMES: PART I. FORMULATION. Earthquake Engineering and Structural Dynamics, 1996, 25, 711-725.	2.5	749
98	FIBRE BEAM-COLUMN MODEL FOR NON-LINEAR ANALYSIS OF R/C FRAMES: PART II. APPLICATIONS. Earthquake Engineering and Structural Dynamics, 1996, 25, 727-742.	2.5	164
99	A new look at reliability of reinforced concrete columns. Structural Safety, 1996, 18, 123-150.	2.8	59
100	FIBRE BEAM–COLUMN MODEL FOR NONâ€LINEAR ANALYSIS OF R/C FRAMES: PART II. APPLICATIONS. Earthquake Engineering and Structural Dynamics, 1996, 25, 727-742.	2.5	2
101	Use of High Performance Computing for Probabilistic Seismic Response Sensitivity Analyses of a Building Structure. , 0, , .		2