
## Zaidon Ashaari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6369535/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                      | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Thermal treatment of wood using vegetable oils: A review. Construction and Building Materials, 2018, 181, 408-419.                                                                                           | 7.2 | 100       |
| 2  | Lignin-based copolymer adhesives for composite wood panels – A review. International Journal of Adhesion and Adhesives, 2019, 95, 102408.                                                                    | 2.9 | 86        |
| 3  | Reducing formaldehyde emission of urea formaldehyde-bonded particleboard by addition of amines as<br>formaldehyde scavenger. Building and Environment, 2018, 142, 188-194.                                   | 6.9 | 69        |
| 4  | Acacia mangium Tannin as Formaldehyde Scavenger for Low Molecular Weight Phenol-Formaldehyde<br>Resin in Bonding Tropical Plywood. Journal of Adhesion Science and Technology, 2010, 24, 1653-1664.          | 2.6 | 38        |
| 5  | Hydrothermal Modification of Wood: A Review. Polymers, 2021, 13, 2612.                                                                                                                                       | 4.5 | 34        |
| 6  | Effects of two-step post heat-treatment in palm oil on the properties of oil palm trunk particleboard.<br>Industrial Crops and Products, 2018, 116, 249-258.                                                 | 5.2 | 33        |
| 7  | Durability of phenolic-resin-treated oil palm wood against subterranean termites a white-rot fungus.<br>International Biodeterioration and Biodegradation, 2013, 85, 126-130.                                | 3.9 | 28        |
| 8  | Nonwood-Based Composites. Current Forestry Reports, 2015, 1, 221-238.                                                                                                                                        | 7.4 | 21        |
| 9  | Microstructural Study, Tensile Properties, and Scanning Electron Microscopy Fractography Failure<br>Analysis of Various Agricultural Residue Fibers. Journal of Natural Fibers, 2015, 12, 154-168.           | 3.1 | 21        |
| 10 | Enhancing the Properties of Low Density Hardwood Dyera costulata Through Impregnation with<br>Phenolic Resin Admixed with Formaldehyde Scavenger. Journal of Applied Sciences, 2011, 11, 3474-3481.          | 0.3 | 20        |
| 11 | Bond integrity of cross laminated timber from Acacia mangium wood as affected by adhesive types, pressing pressures and loading direction. International Journal of Adhesion and Adhesives, 2019, 94, 24-28. | 2.9 | 18        |
| 12 | Effect of ACQ treatment on surface quality and bonding performance of four Malaysian hardwoods<br>and cross laminated timber (CLT). European Journal of Wood and Wood Products, 2021, 79, 285-299.           | 2.9 | 18        |
| 13 | Performance of compreg laminated bamboo/wood hybrid using phenolic-resin-treated strips as core<br>layer. European Journal of Wood and Wood Products, 2016, 74, 621-624.                                     | 2.9 | 17        |
| 14 | Properties of Particleboard Made from Pretreated Particles of Rubberwood, EFB and Rubberwood-EFB<br>Blend. Journal of Applied Sciences, 2007, 7, 1145-1151.                                                  | 0.3 | 17        |
| 15 | Characterisation of phenolic resin and nanoclay admixture and its effect on impreg wood. Wood<br>Science and Technology, 2015, 49, 1209-1224.                                                                | 3.2 | 16        |
| 16 | Influence of Resin Molecular Weight on Curing and Thermal Degradation of Plywood Made From<br>Phenolic Prepreg Palm Veneers. Journal of Adhesion, 2014, 90, 210-229.                                         | 3.0 | 14        |
| 17 | Characterisation of Sequential Solvent Fractionation and Base-catalysed Depolymerisation of Treated<br>Alkali Lignin. BioResources, 2015, 10, 4137-4151.                                                     | 1.0 | 14        |
| 18 | Physico-Mechanical and Biological Durability of Citric Acid-Bonded Rubberwood Particleboard.<br>Polymers, 2021, 13, 98.                                                                                      | 4.5 | 14        |

ZAIDON ASHAARI

| #  | Article                                                                                                                                                                                                                                     | IF                       | CITATIONS          |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------|
| 19 | ADHESION CHARACTERISTICS OF PHENOL FORMALDEHYDE PRE-PREG OIL PALM STEM VENEERS.<br>BioResources, 2012, 7, .                                                                                                                                 | 1.0                      | 13                 |
| 20 | Durability of phenolic-resin-treated sesenduk (Endospermum diadenum) and jelutong (Dyera) Tj ETQq0 0 0 rgBT<br>553-555.                                                                                                                     | Overlock 2.9             | 10 Tf 50 707<br>13 |
| 21 | Characterization and Optimization of the Glyoxalation of a Methanol-Fractionated Alkali Lignin using<br>Response Surface Methodology. BioResources, 2015, 10, .                                                                             | 1.0                      | 11                 |
| 22 | Sorption isotherm and physico-mechanical properties of kedondong (Canarium spp.) wood treated with phenolic resin. Construction and Building Materials, 2021, 288, 123060.                                                                  | 7.2                      | 11                 |
| 23 | Effects of superheated steam treatment on the physical and mechanical properties of light red meranti and kedondong wood. Journal of Tropical Forest Science, 2018, 30, 384-392.                                                            | 0.2                      | 11                 |
| 24 | Possibility of enhancing the dimensional stability of jelutong (Dyera costulata) wood using<br>glyoxalated alkali lignin-phenolic resin as bulking agent. European Journal of Wood and Wood<br>Products, 2018, 76, 269-282.                 | 2.9                      | 10                 |
| 25 | Chemical, physico-mechanical properties and biological durability of rubberwood particleboards after post heat-treatment in palm oil. Holzforschung, 2018, 72, 159-167.                                                                     | 1.9                      | 9                  |
| 26 | Durability of Superheated Steam-Treated Light Red Meranti (Shorea spp.) and Kedondong (Canarium) Tj ETQq0                                                                                                                                   | 0 0 <sub>3</sub> .gBT /C | Overlock 10 Th     |
| 27 | Polygon Sawing: An Optimum Sawing Pattern for Oil Palm Stems. Journal of Biological Sciences, 2006,<br>6, 744-749.                                                                                                                          | 0.3                      | 9                  |
| 28 | Buffering Capacity of Fast-Growing Species and Curing Time of UF Resin Modified With Zinc Borate and<br>Monoammonium Phosphate. American Journal of Applied Sciences, 2010, 7, 1079-1082.                                                   | 0.2                      | 8                  |
| 29 | Dimensional stability of heat oil-cured particleboard made with oil palm trunk and rubberwood.<br>European Journal of Wood and Wood Products, 2017, 75, 285-288.                                                                            | 2.9                      | 8                  |
| 30 | Influence of Chrysoporthe deuterocubensis Canker Disease on the Physical and Mechanical Properties of Eucalyptus urograndis. Forests, 2021, 12, 639.                                                                                        | 2.1                      | 8                  |
| 31 | Effects of Diffusion Process and Compression on Polymer Loading of Laminated <i>Compreg</i> Oil<br>Palm ( <i>Elaeis guineensis</i> ) Wood and Its Relation to Properties. Journal of Biobased<br>Materials and Bioenergy, 2014, 8, 519-525. | 0.3                      | 8                  |
| 32 | Physical and morphological properties of nanoclay in low molecular weight phenol formaldehyde resin by ultrasonication. International Journal of Adhesion and Adhesives, 2015, 62, 124-129.                                                 | 2.9                      | 7                  |
| 33 | Physico-mechanical properties of particleboard made from heat-treated rubberwood particles.<br>European Journal of Wood and Wood Products, 2017, 75, 655-658.                                                                               | 2.9                      | 7                  |
| 34 | Boric Acid Toxicity Trials on the Wood Borer <i>Heterobostrychus aequalis</i><br>Waterhouse (Coleoptera: Bostrychidae). American Journal of Agricultural and Biological Science,<br>2011, 6, 84-91.                                         | 0.4                      | 5                  |
| 35 | Medium Density Fibreboard Made from Kenaf (Hibiscus cannabinus L.) Stem: Effect of<br>Thermo-mechanical Refining and Resin Content. BioResources, 2014, 9, .                                                                                | 1.0                      | 5                  |
| 36 | Addition of ammonium hydroxide as formaldehyde scavenger for sesenduk (Endospermum diadenum)<br>wood compregnated using phenolic resins. European Journal of Wood and Wood Products, 2016, 74,<br>277-280.                                  | 2.9                      | 5                  |

ZAIDON ASHAARI

| #  | Article                                                                                                                                                                                                                                                               | IF              | CITATIONS    |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|
| 37 | Effects of Ammonium Carbonate Post Treatment on Phenolic Resin Treated Sesenduk (Endospermum) Tj ETQq1                                                                                                                                                                | 1 0.7843<br>0.5 | 14 ggBT /Ove |
| 38 | Chemical Constituents of Oil-Cured Tropical Bamboo Gigantochloa scortechinii. Journal of Applied<br>Sciences, 2008, 9, 149-154.                                                                                                                                       | 0.3             | 5            |
| 39 | Effects of Peroxide and Oxalic Acid Bleaching on the Colour and Gluing Properties of Some Tropical<br>Bamboos. Journal of Biological Sciences, 2004, 4, 90-94.                                                                                                        | 0.3             | 5            |
| 40 | Strength improvement of jelutong (Dyera costulata) wood via phenolic resin treatments. Journal of<br>the Indian Academy of Wood Science, 2015, 12, 132-136.                                                                                                           | 0.9             | 4            |
| 41 | Properties of Wood Polymer Nanocomposites Impregnated With STâ€coâ€EDA/Nanoclay. Macromolecular<br>Symposia, 2017, 371, 125-128.                                                                                                                                      | 0.7             | 3            |
| 42 | Effects of pressing cycles and durations on the properties of compreg oil palm wood. Wood Material<br>Science and Engineering, 2019, 14, 59-65.                                                                                                                       | 2.3             | 3            |
| 43 | Application strategies by selective medium treated with entomopathogenic bacteria <i>Serratia<br/>marcescens</i> and <i>Pseudomonas aeruginosa</i> as potential biocontrol against <i>Coptotermes<br/>curvignathus</i> . Royal Society Open Science, 2021, 8, 201311. | 2.4             | 3            |
| 44 | Physico-mechanical properties of light red meranti (Shorea spp.) and kedondong (Canarium spp.) wood<br>heat treated in convection oven. Journal of the Indian Academy of Wood Science, 2018, 15, 41-44.                                                               | 0.9             | 2            |
| 45 | Septicaemia of subterranean termites <i>Coptotermes curvignathus</i> caused by disturbance of bacteria isolated from termite gut and its foraging pathways. Royal Society Open Science, 2020, 7, 200847.                                                              | 2.4             | 2            |
| 46 | Development and Characterization of Wood and Non-wood Particle Based Green Composites. Green<br>Energy and Technology, 2017, , 181-198.                                                                                                                               | 0.6             | 2            |
| 47 | Low viscosity melamine urea formaldehyde resin as a bulking agent in reducing formaldehyde emission of treated wood. BioResources, 2020, 15, 2195-2211.                                                                                                               | 1.0             | 2            |
| 48 | A CONCEPTUAL REVIEW OF WEATHERING TESTING USING MALAYSIAN TROPICAL TIMBER. Jurnal Teknologi<br>(Sciences and Engineering), 2015, 77, .                                                                                                                                | 0.4             | 1            |
| 49 | Effect of different diameters and rake angles of Forstner bit on the quality of drilling on treated oil palm wood. European Journal of Wood and Wood Products, 2018, 76, 369-374.                                                                                     | 2.9             | 1            |
| 50 | Nitrogen deposition and release pattern of slow release fertiliser made from urea-impregnated oil palm frond and rubberwood chips. Journal of Forestry Research, 2019, 30, 2087-2094.                                                                                 | 3.6             | 1            |
| 51 | A preliminary study on physical and mechanical properties of particleboard made from palm<br>oil-treated rubberwood particles. Journal of the Indian Academy of Wood Science, 2019, 16, 27-30.                                                                        | 0.9             | 1            |
| 52 | Synthesis and evaluation of low viscosity melamine urea formaldehyde for bulking treatment of wood. Journal of the Indian Academy of Wood Science, 2020, 17, 176-182.                                                                                                 | 0.9             | 1            |
| 53 | Laminated veneer lumber from spindleless rotary-peeled veneers produced from short rotation, small<br>Hevea plantation logs: Effects of lamination pressure. BioResources, 2020, 15, 6735-6751.                                                                       | 1.0             | 1            |
| 54 | Physical Properties of Hydrothermally Treated Rubberwood [Hevea brasiliensis (Willd. ex A. Juss.)<br>MA¼II. Arg.] in Different Buffered Media. Forests, 2022, 13, 1052.                                                                                               | 2.1             | 1            |

| #  | Article                                                                                                                | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Synthesis and Thermal Stability of Glyoxalated Alkali Lignin-Polyvinylpyrrolidone Resins.<br>BioResources, 2016, 11, . | 1.0 | Ο         |
| 56 | Ecotoxicity of heat-treated Kapur and Japanese larch. European Journal of Wood and Wood Products, 2016, 74, 243-248.   | 2.9 | 0         |
| 57 | Biological durability and deterioration of oil palm biomass. , 2022, , 57-67.                                          |     | Ο         |