Juan Ortega

List of Publications by Citations

Source: https://exaly.com/author-pdf/6369359/juan-ortega-publications-by-citations.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

73 citations 26 h-index 35 g-index

73 cxt. papers ext. citations 3.1 4.48 L-index

#	Paper	IF	Citations
69	Thermodynamic Properties of 1-Butyl-3-methylpyridinium Tetrafluoroborate and Its Mixtures with Water and Alkanols. <i>Journal of Chemical & Engineering Data</i> , 2007 , 52, 2269-2276	2.8	66
68	Design and Characterization of Sugar-Based Deep Eutectic Solvents Using Conductor-like Screening Model for Real Solvents. <i>ACS Sustainable Chemistry and Engineering</i> , 2018 , 6, 10724-10734	8.3	65
67	Experimental Thermodynamic Properties of 1-Butyl-2-methylpyridinium Tetrafluoroborate [b2mpy][BF4] with Water and with Alkan-1-ol and Their Interpretation with the COSMO-RS Methodology. <i>Industrial & Engineering Chemistry Research</i> , 2009 , 48, 2678-2690	3.9	63
66	A fresh look at the thermodynamic consistency of vapour-liquid equilibria data. <i>Journal of Chemical Thermodynamics</i> , 2017 , 105, 385-395	2.9	62
65	Excess molar volumes of (ethyl formate or ethyl acetate + 1-chloroalkane) at 298.15 K. <i>Journal of Chemical & </i>	2.8	59
64	Isobaric vapor-liquid equilibria of ethyl acetate + ethanol mixtures at 760 .+ 0.5 mmHg. <i>Journal of Chemical & Chemica</i>	2.8	55
63	Indirect assessment of the fusion properties of choline chloride from solid-liquid equilibria data. <i>Fluid Phase Equilibria</i> , 2017 , 448, 9-14	2.5	52
62	Isobaric Vapor Liquid Equilibria and Excess Properties for the Binary Systems of Methyl Esters + Heptane. <i>Journal of Chemical & Engineering Data</i> , 2003 , 48, 1183-1190	2.8	48
61	Thermodynamic study on binary mixtures of propyl ethanoate and an alkan-1-ol (C2🖸4). Isobaric vaporliquid equilibria and excess properties. <i>Fluid Phase Equilibria</i> , 2000 , 170, 87-111	2.5	42
60	Characterization and Modeling of the Liquid Phase of Deep Eutectic Solvents Based on Fatty Acids/Alcohols and Choline Chloride. <i>Industrial & Engineering Chemistry Research</i> , 2017 , 56, 12192-7	12202	40
59	Densities and Vaporlliquid Equilibrium Values for Binary Mixtures Composed of Methanol + an Ethyl Ester at 141.3 kPa with Application of an Extended Correlation Equation for Isobaric VLE Data. <i>Journal of Chemical & Data</i> , 1998, 43, 638-645	2.8	38
58	Vaporliquid Equilibria and Densities for Ethyl Esters (Ethanoate to Butanoate) and Alkan-2-ol (C3[14) at 101.32 kPa. <i>Journal of Chemical & Engineering Data</i> , 1997 , 42, 1090-1100	2.8	34
57	Densities and Isobaric Vaporlliquid Equilibria for the Mixtures Formed by Four Butyl Esters and 1-Butanol. <i>Journal of Chemical & Engineering Data</i> , 1996 , 41, 53-58	2.8	34
56	Excess Enthalpies of Alkyl Formates + (n-Alkanes or 1-Chloroalkanes). Experimental Data and their Analysis in Terms of the UNIFAC Model. <i>Zeitschrift Fur Elektrotechnik Und Elektrochemie</i> , 1989 , 93, 730-7	735	34
55	Vapor l liquid Equilibria for Binary Systems Composed of a Propyl Ester (Ethanoate, Propanoate, Butanoate) + an n-Alkane (C7, C9). <i>Journal of Chemical & Data</i> , 2001, 46, 904-912	2.8	33
54	Densities and Isobaric Vapor-Liquid Equilibria of Butyl Esters (Methanoate to Butanoate) with Ethanol at 101.32 kPa. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 1178-1183	2.8	33
53	Thermodynamic behavior of the binaries 1-butylpyridinium tetrafluoroborate with water and alkanols: their interpretation using 1H NMR spectroscopy and quantum-chemistry calculations. <i>Journal of Physical Chemistry B</i> , 2011 , 115, 8763-74	3.4	31

(1995-2003)

52	A New Correlation Method for Vaporliquid Equilibria and Excess Enthalpies for Nonideal Solutions Using a Genetic Algorithm. Application to Ethanol + an n-Alkane Mixtures. <i>Industrial & Engineering Chemistry Research</i> , 2003 , 42, 4978-4992	3.9	31
51	Excess Molar Volumes of Binary Mixtures Containing a Methyl Ester (Ethanoate to Tetradecanoate) with Odd n-Alkanes at 298.15 K. <i>Journal of Chemical & Engineering Data</i> , 1995 , 40, 283-289	2.8	31
50	Measurements of the Excess Properties and Vaporlliquid Equilibria at 101.32 kPa for Mixtures of Ethyl Ethanoate + Alkanes (from C5to C10) (I) Journal of Chemical & Camp; Engineering Data, 2010, 55, 5519	- 5 533	30
49	Vapor l iquid Equilibria at 101.32 kPa and Excess Properties of Binary Mixtures of Butyl Esters + tert-Butyl Alcohol. <i>Journal of Chemical & Engineering Data</i> , 2005 , 50, 444-454	2.8	30
48	Experimental Determination of Densities and Isobaric Vaporlliquid Equilibria of Binary Mixtures Formed by a Propyl Alkanoate (Methanoate to Butanoate) + An Alkan-2-ol (C3, C4). <i>Journal of Chemical & Data</i> , 1999 , 44, 772-783	2.8	30
47	Application of the UNIFAC and Nitta-Chao models to describing the behavior of methyl ester/alkane mixtures, and experimental data for (methyl n-alkanoates + n-heptadecane) binary mixtures. <i>Fluid Phase Equilibria</i> , 1994 , 95, 175-214	2.5	30
46	Determination and algebraic representation of volumes of mixing at 298.15 K of methyl n-alkanoates (from ethanoate to n-pentadecanoate) with n-pentadecane. <i>Fluid Phase Equilibria</i> , 1992 , 71, 49-62	2.5	30
45	Densities and Excess Molar Properties of Dimethyl Carbonate with Alkanes (C6to C10) and VLE of Dimethyl Carbonate with Alkanes (C9to C10) at 101.3 kPa. <i>Journal of Chemical & Data</i> , 2004 , 49, 86-93	2.8	28
44	Measurement and correlation of isobaric vapour Ilquid equilibrium data and excess properties of ethyl methanoate with alkanes (hexane to decane). <i>Fluid Phase Equilibria</i> , 2004 , 215, 175-186	2.5	26
43	New Parametric Model to Correlate the Gibbs Excess Function and Other Thermodynamic Properties of Multicomponent Systems. Application to Binary Systems. <i>Industrial & amp; Engineering Chemistry Research</i> , 2010 , 49, 406-421	3.9	25
42	Isobaric Vapor Liquid Equilibrium Data and Excess Properties of Binary Systems Comprised of Alkyl Methanoates + Hexane. <i>Journal of Chemical & </i>	2.8	25
41	The excess molar volumes, VmE, of mixtures containing ethyl propanoate or ethyl butanoate with 1-chloroalkanes. <i>Journal of Chemical & Engineering Data</i> , 1988 , 33, 260-262	2.8	25
40	Measurements and Correlations of the Isobaric Vapor Liquid Equilibria of Binary Mixtures and Excess Properties for Mixtures Containing an Alkyl (Methyl, Ethyl) Butanoate with an Alkane (Heptane, Nonane) at 101.3 kPa. <i>Journal of Chemical & Data</i> , 2012, 57, 3210-3224	2.8	22
39	Experimental VLE at 101.32 kPa in binary systems composed of ethyl methanoate and alkan-1-ols or alkan-2-ols and treatment of data using a correlation with temperature-dependent parameters. <i>Fluid Phase Equilibria</i> , 1998 , 146, 351-370	2.5	22
38	Isobaric vapor-liquid equilibria for propyl methanoate+(n-alkanes, C7,C8,C9) or n-alkanols(C2,C3,C4) <i>Journal of Chemical Engineering of Japan</i> , 1994 , 27, 529-534	0.8	21
37	Improvements in the Experimentation and the Representation of Thermodynamic Properties (iso-p VLE and yE) of Alkyl Propanoate + Alkane Binaries. <i>Journal of Chemical & Data</i> , 2014, 59, 125-142	2.8	20
36	Advances in the Correlation of Thermodynamic Properties of Binary Systems Applied to Methanol Mixtures with Butyl Esters. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 9548-9558	3.9	20
35	Vapor-Liquid Equilibria and Densities for Propyl Butanoate + Normal Alcohols at 101.32 kPa. Journal of Chemical & Densities for Propyl Butanoate + Normal Alcohols at 101.32 kPa.	2.8	20

34	Liquid Diquid Equilibria in Binary Solutions Formed by [Pyridinium-Derived] [F4B] Ionic Liquids and Alkanols: New Experimental Data and Validation of a Multiparametric Model for Correlating LLE Data. Industrial & Data. Ind	3.9	19
33	Description of Thermodynamic Behavior of the Systems Formed by Alkyl Ethanoates with 1-Chloroalkanes Using the COSMO-RS Methodology Contributing with New Experimental Information. <i>Industrial & Description of the Managering Chemistry Research</i> , 2008 , 47, 3253-3264	3.9	17
32	Vapor-Liquid Equilibria of Propyl Propanoate with 1-Alkanols at 101.32 kPa of Pressure. <i>Journal of Chemical & Chemical &</i>	2.8	17
31	Excess molar volumes of binary mixtures of butyl formate with normal alcohols at 298.15 K. <i>Journal of Chemical & Chemica</i>	2.8	17
30	Behaviour of binary mixtures of an alkyl methanoate+an n-alkane. New experimental values and an interpretation using the UNIFAC model. <i>Physical Chemistry Chemical Physics</i> , 1999 , 1, 2967-2974	3.6	15
29	Revision of interaction parameters for estimating the enthalpies of mixtures of benzyl ethanoate + n-alkanes or 1-chloroalkanes using the UNIFAC model with presentation of new experimental data. <i>Fluid Phase Equilibria</i> , 1993 , 86, 251-273	2.5	15
28	Correlation and Prediction of Excess Quantities and Vapor Liquid Equilibria of Alkyl Esters + tert-Butyl Alcohol: Experimental Data for Propyl Esters + tert-Butyl Alcohol. <i>Journal of Chemical & Engineering Data</i> , 2006 , 51, 730-742	2.8	13
27	Multiproperty Correlation of Experimental Data of the Binaries Propyl Ethanoate + Alkanes (Pentane to Decane). New Experimental Information for Vapor Liquid Equilibrium and Mixing Properties. <i>Journal of Chemical & Data</i> , 2013, 58, 686-706	2.8	12
26	A rigorous method to evaluate the consistency of experimental data in phase equilibria. Application to VLE and VLLE. <i>AICHE Journal</i> , 2017 , 63, 5125-5148	3.6	12
25	Multiproperty modeling for a set of binary systems. Evaluation of a model to correlate simultaneously several mixing properties of methyl ethanoate + alkanes and new experimental data. <i>Fluid Phase Equilibria</i> , 2013 , 341, 105-123	2.5	12
24	Excess properties and isobaric vaporliquid equilibria for four binary systems of alkyl (methyl to butyl) methanoates with decane. <i>Fluid Phase Equilibria</i> , 2010 , 291, 18-31	2.5	11
23	Experimentation and thermodynamic representations of binaries containing compounds of low boiling points: Pentane and alkyl methanoates. <i>Fluid Phase Equilibria</i> , 2014 , 363, 167-179	2.5	10
22	Densities and Vaporliquid Equilibria in Binary Mixtures Formed by Propyl Methanoate + Ethanol, +Propan-1-ol, and +Butan-1-ol at 160.0 kPall Journal of Chemical & Engineering Data, 1996, 41, 859-8	3 6 4 ⁸	10
21	Modeling and Experimental Evaluation of Thermodynamic Properties for Binary Mixtures of Dialkylcarbonate and Alkanes Using a Parametric Model. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7353-7366	3.9	9
20	Vapor-Liquid Equilibria for Mixtures of Several Butyl Esters (Methanoate to Butanoate) and 1-Propanol at 101.32kPa <i>Journal of Chemical Engineering of Japan</i> , 1995 , 28, 765-771	0.8	9
19	Solutions of alkyl methanoates and alkanes: Simultaneous modeling of phase equilibria and mixing properties. Estimation of behavior by UNIFAC with recalculation of parameters. <i>Fluid Phase Equilibria</i> , 2015 , 402, 38-49	2.5	8
18	Contributions to the modeling and behavior of solutions containing ethanoates and hydrocarbons. New experimental data for binaries of butyl ester with alkanes (C5\(\mathbb{L}\)10). Fluid Phase Equilibria, 2016 , 412, 79-93	2.5	7
17	Strategy for the Management of Thermodynamic Data with Application to Practical Cases of Systems Formed by Esters and Alkanes through Experimental Information, Checking-Modeling, and Simulation. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 3410-3429	3.9	6

LIST OF PUBLICATIONS

16	A Study on Alkane + Ester + Ester Systems. Physicochemical Behavior of Binaries and Ternaries of Octane or Iso-octane with Methyl Esters (Ethanoate, Butanoate, Pentanoate). <i>Journal of Chemical & Engineering Data</i> , 2016 , 61, 1177-1191	2.8	5
15	New computational tool to evaluate experimental VLE and VLLE data of multicomponent systems. <i>Computers and Chemical Engineering</i> , 2017 , 106, 437-463	4	5
14	Binary Liquid Diquid Equilibria for Systems of Mono- or Disubstituted Haloalkanes (Cl, Br) and Pyridinium-Based Ionic Liquids. Advances in the Experimentation and Interpretation of Results. <i>Industrial & Digineering Chemistry Research</i> , 2013 , 52, 11758-11766	3.9	5
13	The Parametrization Problem in the Modeling of the Thermodynamic Behavior of Solutions. An Approach Based on Information Theory Fundamentals. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 12876-12893	3.9	4
12	Vapor-liquid equilibria of methyl or ethyl acetate with 1-chloropentane or 1-chlorohexane at 101.32kPa pressure <i>Journal of Chemical Engineering of Japan</i> , 1994 , 27, 351-356	0.8	4
11	Development of a method to model the mixing energy of solutions using COSMO molecular descriptors linked with a semi-empirical model using a combined ANN-QSPR methodology. <i>Chemical Engineering Science</i> , 2020 , 224, 115764	4.4	4
10	Mixing thermodynamic properties of ester-containing solutions: A study on the ternary (methyl alkanoate (pentanoate and methanoate) + methanol) and the corresponding binaries. New contributions to the (ester + ester) interactions. <i>Journal of Chemical Thermodynamics</i> , 2015 , 86, 80-89	2.9	3
9	Design of the Distillation-Extraction Tandem to Separate Ethyl Propanoate from Heptane Solutions Using Pyridinium-Derived Organic Salts as Entrainers. Its Use as a Potential Bioactive Compound. <i>Industrial & Discourse Compound Chemistry Research</i> , 2019 , 58, 973-983	3.9	3
8	Measurement and Prediction of Excess Properties of Binary Mixtures Methyl Decanoate + an Even-Numbered n-Alkane (C6116) at 298.15 K. <i>Journal of Chemical & Data</i> , 2019, 64, 2816-2825	2.8	2
7	Methodology Based on the Theory of Information to Describe the Representation Ability of the DMC + Alkane Behavior. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 1036-1054	3.9	2
6	Extension of the validation method for vaporliquid equilibrium data to systems with nonvolatile components. <i>AICHE Journal</i> , 2019 , 65, e16628	3.6	1
5	New Advances in the Modeling and Verification of Experimental Information for EsterAlkane Solutions: Application to a Batch-Distillation Case. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8346-8360	3.9	1
4	Further Advance to a Practical Methodology To Assess Vaporliquid Equilibrium Data: Influence on Binaries Rectification. <i>Journal of Chemical & Engineering Data</i> , 2019 , 64, 3933-3944	2.8	O
3	Evaluation of VLEs for Binaries of Five Compounds Involved in the Production Processes of Cyclohexanone. <i>ChemEngineering</i> , 2022 , 6, 42	2.6	O
2	Molecular interactions in methanoate/alkanol solutions. Computation of mixing properties and characterization by FTIR/ATR spectroscopy. <i>Journal of Molecular Liquids</i> , 2017 , 248, 725-737	6	
1	Suitable Experimentation-Modeling Binomial to Design the Extraction of an Alkanol with Water in Aqueous Ternary Solutions of Ester-Akanol. <i>Industrial & Engineering Chemistry Research</i> , 2021 , 60, 13938-13949	3.9	