
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6369305/publications.pdf Version: 2024-02-01

RIN KANC

#	Article	IF	CITATIONS
1	Nuclear Targeting of Gold Nanoparticles in Cancer Cells Induces DNA Damage, Causing Cytokinesis Arrest and Apoptosis. Journal of the American Chemical Society, 2010, 132, 1517-1519.	6.6	611
2	Beating cancer in multiple ways using nanogold. Chemical Society Reviews, 2011, 40, 3391.	18.7	552
3	Exploiting the Nanoparticle Plasmon Effect: Observing Drug Delivery Dynamics in Single Cells <i>via</i> Raman/Fluorescence Imaging Spectroscopy. ACS Nano, 2013, 7, 7420-7427.	7.3	153
4	Cancerâ€Cell Targeting and Photoacoustic Therapy Using Carbon Nanotubes as "Bomb―Agents. Small, 2009, 5, 1292-1301.	5.2	139
5	Observing Real-Time Molecular Event Dynamics of Apoptosis in Living Cancer Cells using Nuclear-Targeted Plasmonically Enhanced Raman Nanoprobes. ACS Nano, 2014, 8, 4883-4892.	7.3	138
6	Synergetic degradation of chitosan with gamma radiation and hydrogen peroxide. Polymer Degradation and Stability, 2007, 92, 359-362.	2.7	135
7	Cell Response to Carbon Nanotubes: Sizeâ€Dependent Intracellular Uptake Mechanism and Subcellular Fate. Small, 2010, 6, 2362-2366.	5.2	121
8	Plasmonic Imaging of Human Oral Cancer Cell Communities during Programmed Cell Death by Nuclear-Targeting Silver Nanoparticles. Journal of the American Chemical Society, 2011, 133, 17594-17597.	6.6	113
9	Real-Time Molecular Imaging throughout the Entire Cell Cycle by Targeted Plasmonic-Enhanced Rayleigh/Raman Spectroscopy. Nano Letters, 2012, 12, 5369-5375.	4.5	102
10	Nuclear Targeted Silver Nanospheres Perturb the Cancer Cell Cycle Differently than Those of Nanogold. Bioconjugate Chemistry, 2011, 22, 2324-2331.	1.8	95
11	Comparative study of photothermolysis of cancer cells with nuclear-targeted or cytoplasm-targeted gold nanospheres: continuous wave or pulsed lasers. Journal of Biomedical Optics, 2010, 15, 058002.	1.4	93
12	Dark-field light scattering imaging of living cancer cell component from birth through division using bioconjugated gold nanoprobes. Journal of Biomedical Optics, 2010, 15, 1.	1.4	78
13	Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review. Nano Today, 2015, 10, 542-558.	6.2	76
14	Monitoring the Changes of pH in Lysosomes during Autophagy and Apoptosis by Plasmon Enhanced Raman Imaging. Analytical Chemistry, 2019, 91, 8398-8405.	3.2	75
15	A New Nanotechnology Technique for Determining Drug Efficacy Using Targeted Plasmonically Enhanced Single Cell Imaging Spectroscopy. Journal of the American Chemical Society, 2013, 135, 4688-4691.	6.6	70
16	A paper-based SERS test strip for quantitative detection of Mucin-1 in whole blood. Talanta, 2018, 179, 9-14.	2.9	60
17	Biodistribution and accumulation of intravenously administered carbon nanotubes in mice probed by Raman spectroscopy and fluorescent labeling. Carbon, 2009, 47, 1189-1192.	5.4	58
18	High-temperature surface enhanced Raman spectroscopy for in situ study of solid oxide fuel cell materials. Energy and Environmental Science, 2014, 7, 306-310.	15.6	58

#	Article	IF	CITATIONS
19	UV-enhanced cytotoxicity of thiol-capped CdTe quantum dots in human pancreatic carcinoma cells. Toxicology Letters, 2009, 188, 104-111.	0.4	57
20	Subcellular Tracking of Drug Release from Carbon Nanotube Vehicles in Living Cells. Small, 2012, 8, 777-782.	5.2	52
21	Intracellular uptake, trafficking and subcellular distribution of folate conjugated single walled carbon nanotubes within living cells. Nanotechnology, 2008, 19, 375103.	1.3	49
22	Effects of WO ₃ Particle Size in WO ₃ /Epoxy Resin Radiation Shielding Material. Chinese Physics Letters, 2012, 29, 108102.	1.3	47
23	Biological Targeting of Plasmonic Nanoparticles Improves Cellular Imaging via the Enhanced Scattering in the Aggregates Formed. Journal of Physical Chemistry Letters, 2014, 5, 2555-2561.	2.1	44
24	One-step fabrication of biocompatible chitosan-coated ZnS and ZnS:Mn2+ quantum dots via a γ-radiation route. Nanoscale Research Letters, 2011, 6, 591.	3.1	42
25	Synthesis of antimicrobial silver nanoparticles on silk fibers via γâ€radiation. Journal of Applied Polymer Science, 2009, 112, 2511-2515.	1.3	40
26	A fluorescent <i>Ï,,</i> -probe: quantitative imaging of ultra-trace endogenous hydrogen polysulfide in cells and <i>in vivo</i> . Chemical Science, 2018, 9, 5556-5563.	3.7	37
27	Three-level spaser for next-generation luminescent nanoprobe. Science Advances, 2018, 4, eaat0292.	4.7	36
28	Spaser Nanoparticles for Ultranarrow Bandwidth STED Superâ€Resolution Imaging. Advanced Materials, 2020, 32, 1907233.	11.1	34
29	Function of gold nanoparticles in oral cancer beyond drug delivery: Implications in cell apoptosis. Oral Diseases, 2021, 27, 251-265.	1.5	32
30	Simultaneous quantification of multiple endogenous biothiols in single living cells by plasmonic Raman probes. Chemical Science, 2017, 8, 7582-7587.	3.7	28
31	Synthesis of green CdSe/chitosan quantum dots using a polymer-assisted γ-radiation route. Radiation Physics and Chemistry, 2008, 77, 859-863.	1.4	27
32	Cytotoxic effects of cytoplasmic-targeted and nuclear-targeted gold and silver nanoparticles in HSC-3 cells – A mechanistic study. Toxicology in Vitro, 2015, 29, 694-705.	1.1	26
33	Subcellular‣cale Drug Transport via Ultrasoundâ€Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance. Small, 2017, 13, 1604228.	5.2	25
34	Heat transfer and thermoregulation within single cells revealed by transient plasmonic imaging. CheM, 2021, 7, 1569-1587.	5.8	25
35	A novel route to synthesize CdS quantum dots on the surface of silk fibers via Î ³ -radiation. Materials Letters, 2008, 62, 3447-3449.	1.3	24
36	Explosion of single-walled carbon nanotubes in suspension induced by a large photoacoustic effect. Carbon, 2008, 46, 978-981.	5.4	21

#	Article	IF	CITATIONS
37	Dynamical modeling and experimental evidence on the swelling/deswelling behaviors of pH sensitive hydrogels. Materials Letters, 2008, 62, 3444-3446.	1.3	21
38	<l>l̂3</l> -Radiation Synthesis of Silk Fibroin Coated CdSe Quantum Dots and Their Biocompatibility and Photostability in Living Cells. Journal of Nanoscience and Nanotechnology, 2009, 9, 5693-5700.	0.9	20
39	Plasmonic nanohalo optical probes for highly sensitive imaging of survivin mRNA in living cells. Chemical Communications, 2016, 52, 11052-11055.	2.2	20
40	Selective sorption mechanism of Cs+ on potassium nickel hexacyanoferrate(II) compounds. Journal of Radioanalytical and Nuclear Chemistry, 2015, 304, 527-533.	0.7	19
41	Endogenous MicroRNA-Triggered and Real-Time Monitored Drug Release via Cascaded Energy Transfer Payloads. Analytical Chemistry, 2017, 89, 10239-10247.	3.2	19
42	Pâ€Glycoproteinâ€Dependent Trafficking of Nanoparticleâ€Drug Conjugates. Small, 2014, 10, 1719-1723.	5.2	15
43	Plasmon-enhanced Raman spectroscopic metrics for in situ quantitative and dynamic assays of cell apoptosis and necrosis. Chemical Science, 2017, 8, 1243-1250.	3.7	15
44	The combined influence of surface modification, size distribution, and interaction time on the cytotoxicity of CdTe quantum dots in PANC-1 cells. Acta Biochimica Et Biophysica Sinica, 2012, 44, 241-248.	0.9	14
45	Optical spectral imaging of degeneration of articular cartilage. Journal of Biomedical Optics, 2010, 15, 046024.	1.4	13
46	Photoacoustic "nanobombs―fight against undesirable vesicular compartmentalization of anticancer drugs. Scientific Reports, 2015, 5, 15527.	1.6	13
47	Non-linear mass transport in confined nanofluidic devices for label-free bioanalysis/sensors. TrAC - Trends in Analytical Chemistry, 2020, 123, 115760.	5.8	13
48	Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes. Scientific Reports, 2017, 7, 2296.	1.6	12
49	Plasmon-Resonance-Energy-Transfer-Based Spectroscopy on Single Nanoparticles: Biomolecular Recognition and Enzyme Kinetics. Analytical Chemistry, 2018, 90, 3833-3841.	3.2	12
50	Quantitative Imaging of pN Intercellular Force and Energetic Costs during Collective Cell Migration in Epithelial Wound Healing. Analytical Chemistry, 2020, 92, 16180-16187.	3.2	12
51	The video-rate imaging of sub-10 nm plasmonic nanoparticles in a cellular medium free of background scattering. Chemical Science, 2021, 12, 3017-3024.	3.7	12
52	Radiation synthesis and magnetic properties of novel Co0.7Fe0.3/Chitosan compound nanoparticles for targeted drug carrier. Radiation Physics and Chemistry, 2007, 76, 968-973.	1.4	10
53	Fabrication of silk fibroin coated ZnSe : Mn2+ quantum dots under -radiation and their magnetic properties. Solid State Communications, 2009, 149, 1180-1183.	0.9	9
54	How Gain Layer Design Determines Performance of Nanoparticle-Based Spaser. Journal of Physical Chemistry C, 2020, 124, 16553-16560.	1.5	9

#	Article	IF	CITATIONS
55	Surface plasmon resonance scattering and absorption of biofunctionalized gold nanoparticles for targeted cancer imaging and laser therapy. Science China Technological Sciences, 2011, 54, 2358-2362.	2.0	8
56	Magnetic Nanoparticle Decorated Multi-Walled Carbon Nanotubes for Removing Copper Ammonia Complex from Water. Journal of Nanoscience and Nanotechnology, 2013, 13, 1927-1930.	0.9	8
57	Preparation of Prussianâ€blue analogue/carbon nanotube sponge adsorbent for cesium. Micro and Nano Letters, 2014, 9, 825-828.	0.6	7
58	Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
59	<i>γ</i> -Radiation Synthesis and Properties of Superparamagnetic CS-ZnSe:Mn Nanocrystals for Biological Labeling. Journal of Nanoscience and Nanotechnology, 2008, 8, 3857-3863.	0.9	6
60	UV-Enhanced Cytotoxicity of CdTe Quantum Dots in PANC-1 Cells Depend on Their Size Distribution and Surface Modification. Journal of Nanoscience and Nanotechnology, 2013, 13, 751-754.	0.9	6
61	Imaging Chladni Figure of Plasmonic Charge Density Wave in Real Space. ACS Photonics, 2019, 6, 2685-2693.	3.2	6
62	Gamma radiation synthesis of plasmonic nanoparticles for dark field cell imaging. Micro and Nano Letters, 2012, 7, 360.	0.6	5
63	Preparation of Functional Particles Modified Epoxy Multilayer Composite and their Radiation Shielding Properties. Advanced Materials Research, 2014, 900, 150-153.	0.3	5
64	Super-resolution plasmonic imaging <i>via</i> scattering saturation STED. Chemical Communications, 2021, 57, 3492-3495.	2.2	4
65	SPASER as Nanoprobe for Biological Applications: Current State and Opportunities. Laser and Photonics Reviews, 2022, 16, .	4.4	3
66	Revealing transient events of molecular recognition via super-localization imaging of single-particle motion. Scientific Reports, 2019, 9, 4870.	1.6	2
67	VISUALIZING THE UPTAKE AND INTRACELLULAR VESICLE TRANSPORT OF CARBON NANOTUBES TOWARD THE PERINUCLEAR REGION INSIDE CELLS. Nano, 2014, 09, 1450001.	0.5	1
68	Optimal Design and Preparation of Novel Radiation Shielding Materials Used for Low Energy γ/X-Ray. Advanced Materials Research, 0, 900, 209-212.	0.3	1
69	Photoâ€stability and photoâ€damage of SPASER nanoparticles under nanosecond pulsedâ€laser. Chinese Journal of Chemistry, 0, , .	2.6	1
70	Transient Plasmonic Imaging of Ion Migration on Single Nanoparticles and Insight for Double Layer Dynamics. Angewandte Chemie, 2022, 134, .	1.6	1
71	Ultra-bright and narrow-band emission from Ag atomic sized nanoclusters in a self-assembled plasmonic resonator. Nanoscale, 2022, 14, 9910-9917.	2.8	1