Yuncong C Li

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/636914/yuncong-c-li-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 297
 12,069
 47
 103

 papers
 citations
 h-index
 g-index

 329
 14,249
 4.4
 6.58

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
297	Biochar type and application methods affected nitrogen and phosphorus leaching from a sandy soil amended with inorganic fertilizers and biosolids 2022 , 5, e20236		
296	Hydrothermally-altered feldspar reduces metal toxicity and promotes plant growth in highly metal-contaminated soils. <i>Chemosphere</i> , 2022 , 286, 131768	8.4	2
295	Effect of information-driven irrigation scheduling on water use efficiency, nutrient leaching, greenhouse gas emission, and plant growth in South Florida. <i>Agriculture, Ecosystems and Environment</i> , 2022 , 333, 107954	5.7	O
294	Potential management practices of saltwater intrusion impacts on soil health and water quality: a review. <i>Journal of Water and Climate Change</i> , 2021 , 12, 1327-1343	2.3	O
293	Convergent nitrogen uptake patterns and divergent nitrogen acquisition strategies of coexisting plant species in response to long-term nitrogen enrichment in a temperate grassland. <i>Environmental and Experimental Botany</i> , 2021 , 185, 104412	5.9	2
292	Nano-soy-protein microcapsule-enabled self-healing biopolyurethane-coated controlled-release fertilizer: preparation, performance, and mechanism. <i>Materials Today Chemistry</i> , 2021 , 20, 100413	6.2	3
291	ZVI impregnation altered arsenic sorption by ordered mesoporous carbon in presence of Cr(VI): A mechanistic investigation. <i>Journal of Hazardous Materials</i> , 2021 , 414, 125507	12.8	7
290	Crop Nutrition and Yield Response of Bagasse Application on Sugarcane Grown on a Mineral Soil. <i>Agronomy</i> , 2021 , 11, 1526	3.6	3
289	Fabrication of a Lignin-Based Magnetic Nanocomposite Adsorbent to Recover Phosphorus in Water for Agricultural Reuse. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 10468-10478	8.3	4
288	The combined application of controlled-release urea and fulvic acid improved the soil nutrient supply and maize yield. <i>Archives of Agronomy and Soil Science</i> , 2021 , 67, 633-646	2	8
287	Characterization of residues from non-woody pulping process and its function as fertilizer. <i>Chemosphere</i> , 2021 , 262, 127906	8.4	2
286	Multi-element fingerprinting of soils can reveal conversion of wetlands to croplands. <i>Science of the Total Environment</i> , 2021 , 752, 141997	10.2	0
285	Novel environment-friendly superhydrophobic bio-based polymer derived from liquefied corncob for controlled-released fertilizer. <i>Progress in Organic Coatings</i> , 2021 , 151, 106018	4.8	6
284	Positional Changes of Mandibular Canal Before and After Decompression of Cystic Lesions in the Mandible. <i>Journal of Oral and Maxillofacial Surgery</i> , 2021 , 79, 854-862	1.8	2
283	Slow-released bio-organicIhemical fertilizer improved tomato growth: synthesis and pot evaluations. <i>Journal of Soils and Sediments</i> , 2021 , 21, 319-327	3.4	3
282	Impact of Ambient and Elevated [CO] in Low Light Levels on Growth, Physiology and Nutrient Uptake of Tropical Perennial Legume Cover Crops. <i>Plants</i> , 2021 , 10,	4.5	1
281	Rapid Degradation of Carbon Tetrachloride by Microscale Ag/Fe Bimetallic Particles. <i>International Journal of Environmental Research and Public Health</i> , 2021 , 18,	4.6	2

(2020-2021)

280	Assessing the impacts of biochar and fertilizer management strategies on N and P balances in subtropical pastures. <i>Geoderma</i> , 2021 , 394, 115038	6.7	1	
279	Hydrothermally-altered feldspar as an environmentally-friendly technology to promote heavy metals immobilization: Batch studies and application in smelting-affected soils. <i>Journal of Environmental Management</i> , 2021 , 291, 112711	7.9	4	
278	The Role of Soil Mineral Multi-elements in Improving the Geographical Origin Discrimination of Tea (Camellia sinensis). <i>Biological Trace Element Research</i> , 2021 , 199, 4330-4341	4.5	4	
277	Lignint Nanohybrid Biocomposite-Based Double-Layer Coating Materials for Controllable-Release Fertilizer. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 18957-18965	8.3	11	
276	Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. <i>Journal of Agricultural and Food Chemistry</i> , 2020 , 68, 13620-13631	5.7	4	
275	Light Intensity Effects on the Growth, Physiological and Nutritional Parameters of Tropical Perennial Legume Cover Crops. <i>Agronomy</i> , 2020 , 10, 1515	3.6	2	
274	Self-Assembly of Hydrophobic and Self-Healing Bionanocomposite-Coated Controlled-Release Fertilizers. <i>ACS Applied Materials & Acs Applied Materials & Acc Applied &</i>	9.5	22	
273	Pinewood outperformed bamboo as feedstock to prepare biochar-supported zero-valent iron for Cr reduction. <i>Environmental Research</i> , 2020 , 187, 109695	7.9	19	
272	Novel pit and fissure sealant containing nano-CaF and dimethylaminohexadecyl methacrylate with double benefits of fluoride release and antibacterial function. <i>Dental Materials</i> , 2020 , 36, 1241-1253	5.7	19	
271	Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea. <i>Environmental Pollution</i> , 2020 , 263, 114383	9.3	13	
270	Distribution, accumulation, and potential risks of heavy metals in soil and tea leaves from geologically different plantations. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 195, 110475	7	40	
269	Biosolids and biochar application effects on bahiagrass herbage accumulation and nutritive value. <i>Agronomy Journal</i> , 2020 , 112, 1330-1345	2.2	3	
268	Trophic Ecology and Ecological Function for Oriental River Prawn (Macrobrachium nipponense) in the South-to-North Canal System. <i>Wetlands</i> , 2020 , 40, 1207-1216	1.7	1	
267	Applying and Optimizing Water-Soluble, Slow-Release Nitrogen Fertilizers for Water-Saving Agriculture. <i>ACS Omega</i> , 2020 , 5, 11342-11351	3.9	10	
266	Use of mineral multi-elemental analysis to authenticate geographical origin of different cultivars of tea in Guizhou, China. <i>Journal of the Science of Food and Agriculture</i> , 2020 , 100, 3046-3055	4.3	9	
265	Effect of Biochar and Coal Fly Ash Soil Amendments on the Leaching Loss of Phosphorus in Subtropical Sandy Ultisols. <i>Water, Air, and Soil Pollution</i> , 2020 , 231, 1	2.6	8	
264	Preparation of highly-conductive pyrogenic carbon-supported zero-valent iron for enhanced Cr(VI) reduction. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122712	12.8	42	
263	Urea formaldehyde modified alginate beads with improved stability and enhanced removal of Pb, Cd, and Cu. <i>Journal of Hazardous Materials</i> , 2020 , 396, 122664	12.8	25	

262	Functional structure, taxonomic composition and the dominant assembly processes of soil prokaryotic community along an altitudinal gradient. <i>Applied Soil Ecology</i> , 2020 , 155, 103647	5	3
261	Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. <i>Journal of Hazardous Materials</i> , 2020 , 387, 1216	66 ^{2.8}	50
260	PlantBacteriaBoil response to frequency of simulated nitrogen deposition has implications for global ecosystem change. <i>Functional Ecology</i> , 2020 , 34, 723-734	5.6	9
259	Cadmium absorption and translocation of amaranth (Amaranthus mangostanus L.) affected by iron deficiency. <i>Environmental Pollution</i> , 2020 , 256, 113410	9.3	18
258	Polyethyleneimine-modified biochar for enhanced phosphate adsorption. <i>Environmental Science and Pollution Research</i> , 2020 , 27, 7420-7429	5.1	16
257	Response of black bean (Phaseolus vulgaris L.) to phosphorus fertilization in acidic and alkaline soils in Haiti. <i>Journal of Plant Nutrition</i> , 2020 , 43, 1016-1024	2.3	1
256	Remediation of saline-sodic soil using organic and inorganic amendments: physical, chemical, and enzyme activity properties. <i>Journal of Soils and Sediments</i> , 2020 , 20, 1454-1467	3.4	3
255	Adsorption of acetone and cyclohexane onto CO activated hydrochars. <i>Chemosphere</i> , 2020 , 245, 12566	4 8.4	27
254	Black bean (Phaseolus vulgaris L.) response to potassium fertilization in two different soils in Haiti. Journal of Plant Nutrition, 2020 , 43, 2601-2609	2.3	
253	Paddy periphyton reduced cadmium accumulation in rice (Oryza sativa) by removing and immobilizing cadmium from the water-soil interface. <i>Environmental Pollution</i> , 2020 , 261, 114103	9.3	7
252	Effect of Wheat-Solanum nigrum L. intercropping on Cd accumulation by plants and soil bacterial community under Cd contaminated soil. <i>Ecotoxicology and Environmental Safety</i> , 2020 , 206, 111383	7	12
251	Biochar impacts on nutrient dynamics in a subtropical grassland soil: 1. Nitrogen and phosphorus leaching. <i>Journal of Environmental Quality</i> , 2020 , 49, 1408-1420	3.4	5
250	Biochar impacts on nutrient dynamics in a subtropical grassland soil: 2. Greenhouse gas emissions. Journal of Environmental Quality, 2020 , 49, 1421-1434	3.4	3
249	Optimizing Nitrogen Fertigation Rates for Young Southern Highbush Blueberry. <i>Agronomy</i> , 2020 , 10, 389	3.6	4
248	Immediate influences of a large dam construction on local storm event patterns and weather variables: a case study of the Three Gorges Project. <i>Weather</i> , 2020 , 75, 99-103	0.9	2
247	Long-term effects of controlled-release potassium chloride on soil available potassium, nutrient absorption and yield of maize plants. <i>Soil and Tillage Research</i> , 2020 , 196, 104438	6.5	17
246	Fulvic acid-like substance and its characteristics, an innovative waste recycling material from pulp black liquor. <i>Journal of Cleaner Production</i> , 2020 , 243, 118585	10.3	12
245	Foamed urea-formaldehyde microspheres for removal of heavy metals from aqueous solutions. <i>Chemosphere</i> , 2020 , 241, 125004	8.4	13

244	Adsorption, transformation, and colloid-facilitated transport of nano-zero-valent iron in soils. <i>Environmental Pollutants and Bioavailability</i> , 2019 , 31, 208-218	2.8	6
243	Biomass facilitated phase transformation of natural hematite at high temperatures and sorption of Cd and Cu. <i>Environment International</i> , 2019 , 124, 473-481	12.9	27
242	Chitosan and Graphene Oxide Nanocomposites as Coatings for Controlled-Release Fertilizer. <i>Water, Air, and Soil Pollution</i> , 2019 , 230, 1	2.6	26
241	Activation of fulvic acid-like in paper mill effluents using HO/TiO catalytic oxidation: Characterization and salt stress bioassays. <i>Journal of Hazardous Materials</i> , 2019 , 378, 120702	12.8	9
240	Multifunctional Slow-Release Fertilizer Prepared from Lignite Activated by a 3D-Molybdate-Sulfur Hierarchical Hollow Nanosphere Catalyst. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 10533-105	5 ⁸ 43	16
239	Effects of foliar application of the mixture of copper and chelated iron on the yield, quality, photosynthesis, and microelement concentration of table grape (Vitis vinifera L.). <i>Scientia Horticulturae</i> , 2019 , 254, 106-115	4.1	17
238	Mobility and fractionation of copper in sandy soils. <i>Environmental Pollutants and Bioavailability</i> , 2019 , 31, 18-23	2.8	5
237	One-step synthesis of superhydrophobic and multifunctional nano copper-modified bio-polyurethane for controlled-release fertilizers with Thultilayer air shields Inew insight of improvement mechanism. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 9503-9509	13	21
236	Biochar-supported nZVI (nZVI/BC) for contaminant removal from soil and water: A critical review. Journal of Hazardous Materials, 2019 , 373, 820-834	12.8	164
235	Resources utilization and trophic niche between silver carp and bighead carp in two mesotrophic deep reservoirs. <i>Journal of Freshwater Ecology</i> , 2019 , 34, 199-212	1.4	3
234	Spatial distribution and filtering efficiency of Daphnia in a deep subtropical reservoir. <i>Journal of Oceanology and Limnology</i> , 2019 , 37, 1277-1288	1.5	1
233	Long-term effects of untreated wastewater on soil bacterial communities. <i>Science of the Total Environment</i> , 2019 , 646, 940-950	10.2	12
232	Environmental stress and eutrophication in freshwater wetlands: evidence from carbon and nitrogen stable isotopes in cattail (Typha domingensis Pers.). <i>Ecological Processes</i> , 2019 , 8,	3.6	7
231	Novel Protein-Repellent and Antibacterial Resins and Cements to Inhibit Lesions and Protect Teeth. <i>International Journal of Polymer Science</i> , 2019 , 2019, 1-11	2.4	5
230	Geographical origin discrimination of pepper (L.) based on multi-elemental concentrations combined with chemometrics. <i>Food Science and Biotechnology</i> , 2019 , 28, 1627-1635	3	6
229	Cu(II)-Based Water-Dispersible Humic Acid: Synthesis, Characterizations, and Antifungal and Growth-Promoting Performances. <i>Journal of Agricultural and Food Chemistry</i> , 2019 , 67, 12987-13000	5.7	1
228	Magnetic-Sensitive Nanoparticle Self-Assembled Superhydrophobic Biopolymer-Coated Slow-Release Fertilizer: Fabrication, Enhanced Performance, and Mechanism. <i>ACS Nano</i> , 2019 , 13, 3320-	33333	62
227	Source quantification and potential risk of mercury, cadmium, arsenic, lead, and chromium in farmland soils of Yellow River Delta. <i>Journal of Cleaner Production</i> , 2019 , 221, 98-107	10.3	60

226	Controlled-Release Nitrogen Fertilizer Improved Lodging Resistance and Potassium and Silicon Uptake of Direct-Seeded Rice. <i>Crop Science</i> , 2019 , 59, 2733-2740	2.4	10
225	Molecular Composition of Size-Fractionated Fulvic Acid-Like Substances Extracted from Spent Cooking Liquor and Its Relationship with Biological Activity. <i>Environmental Science & Emp;</i> Technology, 2019 , 53, 14752-14760	10.3	6
224	Bonding durability, antibacterial activity and biofilm pH of novel adhesive containing antibacterial monomer and nanoparticles of amorphous calcium phosphate. <i>Journal of Dentistry</i> , 2019 , 81, 91-101	4.8	9
223	Optimal Organic Fertilizer Rates for Greenhouse Production of Container Fresh Herbs. <i>Communications in Soil Science and Plant Analysis</i> , 2019 , 50, 228-235	1.5	
222	Transport of N-doped graphene in saturated porous media. <i>Chemical Engineering Journal</i> , 2019 , 360, 24-29	14.7	6
221	Chemically activated hydrochar as an effective adsorbent for volatile organic compounds (VOCs). <i>Chemosphere</i> , 2019 , 218, 680-686	8.4	93
220	Biobased Polyurethane, Epoxy Resin, and Polyolefin Wax Composite Coating for Controlled-Release Fertilizer. <i>ACS Applied Materials & amp; Interfaces</i> , 2019 , 11, 5380-5392	9.5	41
219	Bio-based elastic polyurethane for controlled-release urea fertilizer: Fabrication, properties, swelling and nitrogen release characteristics. <i>Journal of Cleaner Production</i> , 2019 , 209, 528-537	10.3	55
218	Influence of nano-hydroxyapatite containing desensitizing toothpastes on the sealing ability of dentinal tubules and bonding performance of self-etch adhesives. <i>Journal of the Mechanical Behavior of Biomedical Materials</i> , 2019 , 91, 38-44	4.1	13
217	Characteristics of Copper Sorption by Various Agricultural Soils in China and the Effect of Exogenic Dissolved Organic Matter on the Sorption. <i>Soil and Sediment Contamination</i> , 2018 , 27, 311-328	3.2	4
216	Siloxane and polyether dual modification improves hydrophobicity and interpenetrating polymer network of bio-polymer for coated fertilizers with enhanced slow release characteristics. <i>Chemical Engineering Journal</i> , 2018 , 350, 1125-1134	14.7	44
215	Growth, Physiological and Nutrient Uptake Traits of Crotalaria Cover Crops Influenced by Levels of Carbon Dioxide under Low Light Intensities. <i>International Journal of Plant & Soil Science</i> , 2018 , 23, 1-14	0.5	4
214	Time series trend analysis and prediction of water quality in a managed canal system, Florida (USA). <i>IOP Conference Series: Earth and Environmental Science</i> , 2018 , 191, 012013	0.3	2
213	Multielemental Analysis Associated with Chemometric Techniques for Geographical Origin Discrimination of Tea Leaves () in Guizhou Province, SW China. <i>Molecules</i> , 2018 , 23,	4.8	25
212	Developing a New Generation of Therapeutic Dental Polymers to Inhibit Oral Biofilms and Protect Teeth. <i>Materials</i> , 2018 , 11,	3.5	10
211	Source Contribution Analysis and Collaborative Assessment of Heavy Metals in Vegetable-Growing Soils. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 10943-10951	5.7	28
2 10	Bio-based Large Tablet Controlled-Release Urea: Synthesis, Characterization, and Controlled-Released Mechanisms. <i>Journal of Agricultural and Food Chemistry</i> , 2018 , 66, 11265-11272	5.7	23
209	Effect of plant age on in-soil decomposition and nitrogen content of sunn hemp tissue. Communications in Soil Science and Plant Analysis, 2018, 49, 2680-2688	1.5	2

208	Phosphorus Application Rates Affected Phosphorus Partitioning and Use Efficiency in Tomato Production. <i>Agronomy Journal</i> , 2018 , 110, 2050-2058	2.2	3
207	Controlled-release urea reduced nitrogen leaching and improved nitrogen use efficiency and yield of direct-seeded rice. <i>Journal of Environmental Management</i> , 2018 , 220, 191-197	7.9	40
206	Novel magnetic nanoparticle-containing adhesive with greater dentin bond strength and antibacterial and remineralizing capabilities. <i>Dental Materials</i> , 2018 , 34, 1310-1322	5.7	19
205	Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. <i>Journal of Hazardous Materials</i> , 2017 , 322, 172-181	12.8	210
204	Research on saline-alkali soil amelioration with FGD gypsum. <i>Resources, Conservation and Recycling</i> , 2017 , 121, 82-92	11.9	58
203	Biochar provides a safe and value-added solution for hyperaccumulating plant disposal: A case study of Phytolacca acinosa Roxb. (Phytolaccaceae). <i>Chemosphere</i> , 2017 , 178, 59-64	8.4	41
202	Decadal and seasonal trends of nutrient concentration and export from highly managed coastal catchments. <i>Water Research</i> , 2017 , 115, 180-194	12.5	24
201	Sunn hemp intercrop and mulch increases papaya growth and reduces wind speed and virus damage. <i>Scientia Horticulturae</i> , 2017 , 218, 304-315	4.1	4
200	Adsorption of VOCs onto engineered carbon materials: A review. <i>Journal of Hazardous Materials</i> , 2017 , 338, 102-123	12.8	672
199	An HPLC method for simultaneous quantitative determination of seven secoiridoid glucosides separated from the roots of Ilex pubescens. <i>Biomedical Chromatography</i> , 2017 , 31, e3995	1.7	4
198	Biomimetic Superhydrophobic Biobased Polyurethane-Coated Fertilizer with Atmosphere "Outerwear". <i>ACS Applied Materials & Discreta (Materials & Materials & Materi</i>	9.5	59
197	Functionalizing biochar with MgAl and MgEe layered double hydroxides for removal of phosphate from aqueous solutions. <i>Journal of Industrial and Engineering Chemistry</i> , 2017 , 47, 246-253	6.3	157
196	Responses of Tomato to Potassium Rates in a Calcareous Soil. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2017 , 52, 764-769	2.4	2
195	Value-Added Humic Acid Derived from Lignite Using Novel Solid-Phase Activation Process with Pd/CeO2 Nanocatalyst: A Physiochemical Study. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 10	0 ⁹ 9-10	146
194	Potassium Rates Affected Potassium Uptake and Use Efficiency in Drip-Irrigated Tomato. <i>Agronomy Journal</i> , 2017 , 109, 2945-2956	2.2	1
193	Effects of Polymer Coated Urea and Irrigation Rates on Lantana Growth and Nitrogen Leaching. <i>Soil Science Society of America Journal</i> , 2017 , 81, 546-555	2.5	4
192	Superhydrophobic controlled-release fertilizers coated with bio-based polymers with organosilicon and nano-silica modifications. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 19943-19953	13	53
191	Biochar for volatile organic compound (VOC) removal: Sorption performance and governing mechanisms. <i>Bioresource Technology</i> , 2017 , 245, 606-614	11	123

190	Insights into the mercury(II) adsorption and binding mechanism onto several typical soils in China. <i>Environmental Science and Pollution Research</i> , 2017 , 24, 23607-23619	5.1	11
189	Nitrogen Uptake and Allocation at Different Growth Stages of Young Southern Highbush Blueberry Plants. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2017 , 52, 905-909	2.4	3
188	Effects of Plant Growth-Promoting Rhizobacteria and N Source on Plant Growth and N and P Uptake by Tomato Grown on Calcareous Soils. <i>Pedosphere</i> , 2017 , 27, 1027-1036	5	40
187	Effect of Phosphorus Rates on Growth, Yield, and Postharvest Quality of Tomato in a Calcareous Soil. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2017 , 52, 1406-1412	2.4	7
186	Activated-Lignite-Based Super Large Granular Slow-Release Fertilizers Improve Apple Tree Growth: Synthesis, Characterizations, and Laboratory and Field Evaluations. <i>Journal of Agricultural and Food Chemistry</i> , 2017 , 65, 5879-5889	5.7	21
185	Environmentally Friendly Slow-Release Urea Fertilizers Based on Waste Frying Oil for Sustained Nutrient Release. <i>ACS Sustainable Chemistry and Engineering</i> , 2017 , 5, 6036-6045	8.3	47
184	Comparing Extractants for Calibrating Potassium Rates for Tomato Grown on a Calcareous Soil. <i>Soil Science Society of America Journal</i> , 2017 , 81, 1621-1628	2.5	1
183	Ambient and Elevated Carbon Dioxide on Growth, Physiological and Nutrient Uptake Parameters of Perennial Leguminous Cover Crops under Low Light Intensities. <i>International Journal of Plant & Soil Science</i> , 2017 , 15, 1-16	0.5	5
182	Improving phosphorus use efficiency for snap bean production by optimizing application rate. <i>Zahradnictvi (Prague, Czech Republic: 1992)</i> , 2016 , 42, 94-101	1.1	1
181	Using Bioethanol Wastes as an Alternative Phosphorus Source for Snap Bean and Radish Production. <i>American Journal of Environmental Sciences</i> , 2016 , 12, 1-7	0.5	1
180	Organic silicone-modified transgenic soybean oil as bio-based coating material for controlled-release urea fertilizers. <i>Journal of Applied Polymer Science</i> , 2016 , 133,	2.9	12
179	Chemical speciation of cadmium: An approach to evaluate plant-available cadmium in Ecuadorian soils under cacao production. <i>Chemosphere</i> , 2016 , 150, 57-62	8.4	33
178	Sorption of arsenic onto Ni/Fe layered double hydroxide (LDH)-biochar composites. <i>RSC Advances</i> , 2016 , 6, 17792-17799	3.7	62
177	Chemo-mechanical modification of cottonwood for Pb(2+) removal from aqueous solutions: Sorption mechanisms and potential application as biofilter in drip-irrigation. <i>Chemosphere</i> , 2016 , 161, 1-9	8.4	23
176	Bio-based Interpenetrating Network Polymer Composites from Locust Sawdust as Coating Material for Environmentally Friendly Controlled-Release Urea Fertilizers. <i>Journal of Agricultural and Food Chemistry</i> , 2016 , 64, 5692-700	5.7	63
175	Soil carbon as affected by cover crops under no-till under tropical climate. <i>Soil Use and Management</i> , 2016 , 32, 495-503	3.1	14
174	Comparison of Mehlich-3 and Ammonium Bicarbonate-DTPA for the Extraction of Phosphorus and Potassium in Calcareous Soils from Florida. <i>Communications in Soil Science and Plant Analysis</i> , 2016 , 47, 2315-2324	1.5	5
173	Evaluation of soil amendments as a remediation alternative for cadmium-contaminated soils under cacao plantations. <i>Environmental Science and Pollution Research</i> , 2016 , 23, 17571-80	5.1	12

(2015-2016)

172	High efficiency and selectivity of MgFe-LDH modified wheat-straw biochar in the removal of nitrate from aqueous solutions. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 63, 312-317	5.3	95
171	Enhanced arsenic removal by biochar modified with nickel (Ni) and manganese (Mn) oxyhydroxides. Journal of Industrial and Engineering Chemistry, 2016 , 37, 361-365	6.3	63
170	Two new compounds from the roots of Ilex pubescens and their cytotoxic activity. <i>Journal of Natural Medicines</i> , 2016 , 70, 673-8	3.3	6
169	Sorption of arsenate onto magnetic ironthanganese (FelMn) biochar composites. <i>RSC Advances</i> , 2015 , 5, 67971-67978	3.7	56
168	Wading bird guano enrichment of soil nutrients in tree islands of the Florida Everglades. <i>Science of the Total Environment</i> , 2015 , 532, 40-7	10.2	20
167	Concentration of cadmium in cacao beans and its relationship with soil cadmium in southern Ecuador. <i>Science of the Total Environment</i> , 2015 , 533, 205-14	10.2	90
166	Stable isotope compositions of aquatic flora as indicators of wetland eutrophication. <i>Ecological Engineering</i> , 2015 , 83, 13-18	3.9	10
165	Uptake efficiency of 15N-urea in flooded and aerobic rice fields under semi-arid conditions. <i>Paddy and Water Environment</i> , 2015 , 13, 545-556	1.6	9
164	Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. <i>Applied Soil Ecology</i> , 2015 , 96, 217-224	5	59
163	Identifying irrigation and nitrogen best management practices for aerobic riceshaize cropping system for semi-arid tropics using CERES-rice and maize models. <i>Agricultural Water Management</i> , 2015 , 149, 23-32	5.9	37
162	Removal of arsenic by magnetic biochar prepared from pinewood and natural hematite. <i>Bioresource Technology</i> , 2015 , 175, 391-5	11	410
161	Soil recovery across a chronosequence of restored wetlands in the Florida Everglades. <i>Scientific Reports</i> , 2015 , 5, 17630	4.9	6
160	Polymer-Coated Tablet Urea Improved Rice Yield and Nitrogen Use Efficiency. <i>Agronomy Journal</i> , 2015 , 107, 1837-1844	2.2	20
159	Phosphorus availability and environmental risks in potato fields in North Florida. <i>Soil Use and Management</i> , 2015 , 31, 308-312	3.1	8
158	Closure to Interactive Irrigation Tool for Simulating Smart Irrigation Technologies in Lawn TurfIby N. A. Dobbs, K. W. Migliaccio, M. D. Dukes, K. T. Morgan, and Y. C. Li. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2015 , 141, 07014049	1.1	
157	Soil Aggregation, Organic Carbon Concentration, and Soil Bulk Density As Affected by Cover Crop Species in a No-Tillage System. <i>Revista Brasileira De Ciencia Do Solo</i> , 2015 , 39, 871-879	1.5	20
156	Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. <i>Chemosphere</i> , 2015 , 134, 257-62	8.4	140
155	Characterization of humic acids derived from Leonardite using a solid-state NMR spectroscopy and effects of humic acids on growth and nutrient uptake of snap bean. <i>Chemical Speciation and Bioavailability</i> , 2015 , 27, 156-161		14

154	Decision tools for coral reef managers: Using participatory decision support to integrate potential climate impacts and informed decision making. <i>Global Ecology and Conservation</i> , 2015 , 4, 491-504	2.8	4
153	Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. <i>Bioresource Technology</i> , 2015 , 181, 13-7	11	254
152	Effects of graphene on seed germination and seedling growth. <i>Journal of Nanoparticle Research</i> , 2015 , 17, 1	2.3	90
151	Evaluating irrigation applied and nitrogen leached using different smart irrigation technologies on bahiagrass (Paspalum notatum). <i>Irrigation Science</i> , 2014 , 32, 193-203	3.1	19
150	Effects of Dryout and Inflow Water Quality on Mercury Methylation in a Constructed Wetland. Water, Air, and Soil Pollution, 2014 , 225, 1	2.6	15
149	Simulating water table response to proposed changes in surface water management in the C-111 agricultural basin of south Florida. <i>Agricultural Water Management</i> , 2014 , 146, 185-200	5.9	3
148	Wading bird guano contributes to Hg accumulation in tree island soils in the Florida Everglades. <i>Environmental Pollution</i> , 2014 , 184, 313-9	9.3	6
147	Characterization of biomass residues and their amendment effects on water sorption and nutrient leaching in sandy soil. <i>Chemosphere</i> , 2014 , 107, 354-359	8.4	11
146	Slow-release fertilizer encapsulated by graphene oxide films. <i>Chemical Engineering Journal</i> , 2014 , 255, 107-113	14.7	86
145	Phosphate minerals and solubility in native and agricultural calcareous soils. <i>Geoderma</i> , 2014 , 232-234, 164-171	6.7	27
144	Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: important role of dissolved organic matter from biochar. <i>Journal of Hazardous Materials</i> , 2014 , 267, 62-70	12.8	139
143	Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques. <i>Journal of Environmental Quality</i> , 2014 , 43, 599-610	3.4	21
142	IL-18 promoter -137G/C polymorphism correlates with chronic hepatitis B and affects the expression of interleukins. <i>Acta Virologica</i> , 2014 , 58, 28-33	2.2	5
141	NUTRIENT UPTAKE AND USE EFFICIENCY BY TROPICAL LEGUME COVER CROPS AT VARYING PH OF AN OXISOL. <i>Journal of Plant Nutrition</i> , 2014 , 37, 294-311	2.3	9
140	Terrestrial contributions to the aquatic food web in the middle Yangtze River. <i>PLoS ONE</i> , 2014 , 9, e102	433 7	14
139	Inhibitory effects of quercetin on angiogenesis in larval zebrafish and human umbilical vein endothelial cells. <i>European Journal of Pharmacology</i> , 2014 , 723, 360-7	5.3	43
138	Variations of mercury in the inflow and outflow of a constructed treatment wetland in south Florida, USA. <i>Ecological Engineering</i> , 2013 , 61, 419-425	3.9	11
137	Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: characterization and phosphate removal potential. <i>Bioresource Technology</i> , 2013 , 138, 8-13	11	209

136	Dynamic factor analysis of surface water management impacts on soil and bedrock water contents in Southern Florida Lowlands. <i>Journal of Hydrology</i> , 2013 , 488, 55-72	6	10
135	Cover crops and no-till effects on physical fractions of soil organic matter. <i>Soil and Tillage Research</i> , 2013 , 130, 52-57	6.5	50
134	Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry. <i>Environmental Science & Environmental Science </i>	10.3	146
133	Interactive Irrigation Tool for Simulating Smart Irrigation Technologies in Lawn Turf. <i>Journal of Irrigation and Drainage Engineering - ASCE</i> , 2013 , 139, 747-754	1.1	6
132	Oxygen Amendment on Growth and Nitrogen Use Efficiency of Flooded Italian Basil. <i>International Journal of Vegetable Science</i> , 2013 , 19, 217-227	1.2	7
131	Characteristics of Soil Phosphorus in Tree Island Hardwood Hammocks of the Southern Florida Everglades. <i>Soil Science Society of America Journal</i> , 2013 , 77, 1048-1056	2.5	9
130	Soil Organic Matter and Physical Attributes Affected by Crop Rotation Under No-till. <i>Soil Science Society of America Journal</i> , 2013 , 77, 1724-1731	2.5	33
129	Controlled-release urea commingled with rice seeds reduced emission of ammonia and nitrous oxide in rice paddy soil. <i>Journal of Environmental Quality</i> , 2013 , 42, 1661-73	3.4	17
128	Characterization of Humic Acids and Fulvic Acids Derived from Sewage Sludge. <i>Asian Journal of Chemistry</i> , 2013 , 25, 10087-10091	0.4	19
127	Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers. <i>Journal of Agricultural and Food Chemistry</i> , 2013 , 61, 8166-74	5.7	103
126	Sorption of atrazine and ametryn by carbonatic and non-carbonatic soils of varied origin. <i>Environmental Pollution</i> , 2012 , 169, 12-9	9.3	36
125	Polymerization shrinkage/stress and dentin bond strength of silorane and dimethacrylate-based dental composites. <i>Journal of Applied Polymer Science</i> , 2012 , 124, 436-443	2.9	6
124	Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets. <i>Journal of Agricultural and Food Chemistry</i> , 2012 , 60, 11229-37	5.7	76
123	In Situ Digestion of Rock Phosphates to Mobilize Plant-Available Phosphate for Organic Farming. <i>Communications in Soil Science and Plant Analysis</i> , 2012 , 43, 2191-2201	1.5	3
122	ENHANCING NITROGEN USE EFFICIENCY OF POTATO AND CEREAL CROPS BY OPTIMIZING TEMPERATURE, MOISTURE, BALANCED NUTRIENTS AND OXYGEN BIOAVAILABILITY. <i>Journal of Plant Nutrition</i> , 2012 , 35, 428-441	2.3	7
121	High retention of N P nutrients, soil organic carbon, and fine particles by cover crops under tropical climate. <i>Agronomy for Sustainable Development</i> , 2012 , 32, 781-790	6.8	1
120	Water savings, nutrient leaching, and fruit yield in a young avocado orchard as affected by irrigation and nutrient management. <i>Irrigation Science</i> , 2012 , 30, 275-286	3.1	27
119	Global pattern of carbon stable isotopes of suspended particulate organic matter in lakes. <i>Limnology</i> , 2012 , 13, 253-260	1.7	8

118	Controlled Release Urea Improved Nitrogen Use Efficiency, Activities of Leaf Enzymes, and Rice Yield. <i>Soil Science Society of America Journal</i> , 2012 , 76, 2307-2317	2.5	101
117	Cover Crops in Mono- and Biculture for Accumulation of Biomass and Soil Organic Carbon. <i>Agroecology and Sustainable Food Systems</i> , 2012 , 36, 423-439		7
116	Impact of Aerobic Rice Cultivation on Growth, Yield, and Water Productivity of RiceMaize Rotation in Semiarid Tropics. <i>Agronomy Journal</i> , 2012 , 104, 1757-1765	2.2	29
115	Increased Oxygen Bioavailability Improved Vigor and Germination of Aged Vegetable Seeds. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2012 , 47, 1714-1721	2.4	13
114	Phosphorus fractionation and distribution in sediments from wetlands and canals of a water conservation area in the Florida Everglades. <i>Water Resources Research</i> , 2011 , 47,	5.4	9
113	Calibration of a combined dielectric probe for soil moisture and porewater salinity measurement in organic and mineral coastal wetland soils. <i>Geoderma</i> , 2011 , 161, 50-62	6.7	23
112	Land use disturbance indicators and water quality variability in the Biscayne Bay Watershed, Florida. <i>Ecological Indicators</i> , 2011 , 11, 1093-1104	5.8	76
111	Validation of Growth and Nutrient Uptake Models for Tomato on a Gravelly South Florida Soil Under Greenhouse Conditions. <i>Pedosphere</i> , 2011 , 21, 46-55	5	1
110	Polymerization shrinkage, stress, and degree of conversion in silorane- and dimethacrylate-based dental composites. <i>Journal of Applied Polymer Science</i> , 2011 , 122, 1882-1888	2.9	16
109	Effects of water discharge and sediment load on evolution of modern Yellow River Delta, China, over the period from 1976 to 2009. <i>Biogeosciences</i> , 2011 , 8, 2427-2435	4.6	65
108	Predicting Soil Water Content Using the D rained to Equilibrium C oncept. <i>Vadose Zone Journal</i> , 2011 , 10, 675-682	2.7	8
107	Shrinkage properties of a modified dental resin composites containing a novel spiro-orthocarbonate expanding monomer. <i>Materials Letters</i> , 2011 , 65, 3586-3589	3.3	20
106	Optimizing the weight loss-on-ignition methodology to quantify organic and carbonate carbon of sediments from diverse sources. <i>Environmental Monitoring and Assessment</i> , 2011 , 174, 241-57	3.1	105
105	Investigation of long-term trends in selected physical and chemical parameters of inflows to Everglades National Park, 1977-2005. <i>Environmental Monitoring and Assessment</i> , 2011 , 178, 525-36	3.1	5
104	Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. <i>Journal of Hazardous Materials</i> , 2011 , 190, 909-15	12.8	373
103	Effects of Temperature and Soil Type on Ammonia Volatilization from Slow-Release Nitrogen Fertilizers. <i>Communications in Soil Science and Plant Analysis</i> , 2011 , 42, 1111-1122	1.5	28
102	Restoration of Disturbed Lands: The Hole-in-the-Donut Restoration in the Everglades. <i>Critical Reviews in Environmental Science and Technology</i> , 2011 , 41, 723-739	11.1	15
101	RE-GREENING OF LYCHEE (LITCHI CHINENSIS SONN.) LEAVES WITH FOLIAR APPLICATIONS OF IRON SULFATE AND WEAK ACIDS. <i>Journal of Plant Nutrition</i> , 2011 , 34, 1341-1359	2.3	5

(2008-2011)

100	Using Soil Potassium Adsorption and Yield Response Models to Determine Potassium Fertilizer Rates for Potato Crop on a Calcareous Soil in Pakistan. <i>Communications in Soil Science and Plant Analysis</i> , 2011 , 42, 645-655	1.5	8
99	Water quality trends at inflows to Everglades National Park, 1977-2005. <i>Journal of Environmental Quality</i> , 2010 , 39, 1724-33	3.4	9
98	Phosphorus Adsorption by Ceramic Suction Lysimeters. <i>Vadose Zone Journal</i> , 2010 , 9, 1092-1099	2.7	4
97	Phosphorus release from ash and remaining tissues of two wetland species after a prescribed fire. Journal of Environmental Quality, 2010 , 39, 1585-93	3.4	6
96	Cropping Systems to Improve Carbon Sequestration for Mitigation of Climate Change. <i>Journal of Environmental Protection</i> , 2010 , 01, 207-215	0.6	37
95	Nitrogen Release from Slow-Release Fertilizers as Affected by Soil Type and Temperature. <i>Soil Science Society of America Journal</i> , 2010 , 74, 1635-1641	2.5	31
94	Cover crops alter phosphorus soil fractions and organic matter accumulation in a Peruvian cacao agroforestry system. <i>Agroforestry Systems</i> , 2010 , 80, 447-455	2	7
93	Phosphorus adsorption and desorption behavior on sediments of different origins. <i>Journal of Soils and Sediments</i> , 2010 , 10, 1159-1173	3.4	67
92	Land Application of Compost and Other Wastes (By-products) in Florida: Regulations, Characteristics, Benefits, and Concerns. <i>HortTechnology</i> , 2010 , 20, 41-51	1.3	
91	Estimation of postfire nutrient loss in the Florida everglades. <i>Journal of Environmental Quality</i> , 2009 , 38, 1812-20	3.4	19
90	Effects of burn temperature on ash nutrient forms and availability from cattail (Typha domingensis) and sawgrass (Cladium jamaicense) in the Florida Everglades. <i>Journal of Environmental Quality</i> , 2009 , 38, 451-64	3.4	26
89	Cover Crops and Organic Mulch to Improve Tomato Yields and Soil Fertility. <i>Agronomy Journal</i> , 2009 , 101, 345-351	2.2	22
88	Effects of Slow-Release Fertilizers on Tomato Growth and Nitrogen Leaching. <i>Communications in Soil Science and Plant Analysis</i> , 2009 , 40, 3452-3468	1.5	9
87	Genotypic Differences in Potassium Nutrition in Lowland Rice Hybrids. <i>Communications in Soil Science and Plant Analysis</i> , 2009 , 40, 1803-1821	1.5	12
86	Differential Soil Acidity Tolerance of Tropical Legume Cover Crops. <i>Communications in Soil Science and Plant Analysis</i> , 2009 , 40, 1148-1160	1.5	18
85	Apatite Control of Phosphorus Release to Runoff from Soils of Phosphate Mine Reclamation Areas. <i>Water, Air, and Soil Pollution</i> , 2009 , 202, 189-198	2.6	11
84	The Role of Nutrient Efficient Plants in Improving Crop Yields in the Twenty First Century. <i>Journal of Plant Nutrition</i> , 2008 , 31, 1121-1157	2.3	263
83	Heavy metal leaching from coal fly ash amended container substrates during Syngonium production. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes,</i> 2008 , 43, 179-86	2.2	6

82	Potential of an Alkaline-Stabilized Biosolid to Manage Nematodes: Case Studies on Soybean Cyst and Root-Knot Nematodes. <i>Plant Disease</i> , 2008 , 92, 4-13	1.5	10
81	Design and Field Evaluation of a New Controller for Soil-Water Based Irrigation. <i>Applied Engineering in Agriculture</i> , 2008 , 24, 183-191	0.8	21
80	Assessing capillary rise in a field nursery considering irrigation management 2008,		1
79	Assessing benefits of irrigation and nutrient management practices on a southeast Florida royal palm (Roystonea elata) field nursery. <i>Irrigation Science</i> , 2008 , 27, 57-66	3.1	6
78	Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. <i>Water Resources Research</i> , 2007 , 43,	5.4	26
77	Seasonality of selected surface water constituents in the Indian River Lagoon, Florida. <i>Journal of Environmental Quality</i> , 2007 , 36, 416-25	3.4	14
76	Moisture Quotients for Ammonia Volatilization from Four Soils in Potato Production Regions. <i>Water, Air, and Soil Pollution</i> , 2007 , 183, 115-127	2.6	18
75	Trend Analysis of Nutrient Concentrations and Loads in Selected Canals of the Southern Indian River Lagoon, Florida. <i>Water, Air, and Soil Pollution</i> , 2007 , 186, 195-208	2.6	21
74	Physiological Responses of Wheat Phosphorus-Efficient and -Inefficient Genotypes in Field and Effects of Mixing Other Nutrients on Mobilization of Insoluble Phosphates in Hydroponics. <i>Communications in Soil Science and Plant Analysis</i> , 2007 , 38, 2239-2256	1.5	9
73	High Water Regime Can Reduce Ammonia Volatilization from Soils under Potato Production. <i>Communications in Soil Science and Plant Analysis</i> , 2007 , 38, 1203-1220	1.5	15
72	Temperature Quotients of Ammonia Emission of Different Nitrogen Sources Applied to Four Agricultural Soils. <i>Soil Science Society of America Journal</i> , 2007 , 71, 1482-1489	2.5	12
71	Influence of cover crops and soil amendments on okra (Abelmoschus esculentus L.) production and soil nematodes. <i>Renewable Agriculture and Food Systems</i> , 2007 , 22, 41-53	1.8	6
70	Changes of Soil Microbial Biomass Carbon and Nitrogen with Cover Crops and Irrigation in a Tomato Field. <i>Journal of Plant Nutrition</i> , 2007 , 30, 623-639	2.3	25
69	Coal fly ash as an amendment to container substrate for Spathiphyllum production. <i>Bioresource Technology</i> , 2006 , 97, 1920-6	11	22
68	Summer Cover Crops and Soil Amendments to Improve Growth and Nutrient Uptake of Okra. <i>HortTechnology</i> , 2006 , 16, 328-338	1.3	3
67	Cover Crop Benefits for South Florida Commercial Vegetable Producers. <i>Edis</i> , 2006 , 2006,	1.3	2
66	Amendment of Fly Ash to Container Substrates for Ornamental Plant Production 2006 , 177-183		2
65	Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent to Everglades National Park. <i>Journal of Contaminant Hydrology</i> , 2005 , 80, 49-70	3.9	64

(2003-2005)

64	Comparison of Analytical Methods for Organic Matter in Composts and Organic Mulches. <i>Communications in Soil Science and Plant Analysis</i> , 2005 , 36, 2587-2599	1.5	6
63	Determination of Cation Exchange Capacity on Low to Highly Calcareous Soils. <i>Communications in Soil Science and Plant Analysis</i> , 2005 , 36, 1479-1498	1.5	14
62	Correlation of Visual Quality Grading and SPAD Reading of Green-Leaved Foliage Plants. <i>Journal of Plant Nutrition</i> , 2005 , 28, 1215-1225	2.3	38
61	Flooding Influences on Growth and Development of Bush Bean Under Greenhouse Conditions. <i>International Journal of Vegetable Science</i> , 2005 , 11, 43-56		
60	Influence of Cover Crops and Irrigation Rates on Tomato Yields and Quality in a Subtropical Region. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 2005 , 40, 2125-2131	2.4	13
59	Field Comparison of Tensiometer and Granular Matrix Sensor Automatic Drip Irrigation on Tomato. <i>HortTechnology</i> , 2005 , 15, 584-590	1.3	51
58	Rainwater harvesting - an alternative for securing food production under climate variability. <i>Water Science and Technology</i> , 2004 , 49, 157-163	2.2	2
57	Distribution and fractionation of phosphorus, cadmium, nickel, and lead in calcareous soils amended with composts. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2004 , 39, 209-23	2.2	25
56	Nondestructive and Rapid Estimation of Leaf Chlorophyll and Nitrogen Status of Peace Lily Using a Chlorophyll Meter. <i>Journal of Plant Nutrition</i> , 2004 , 27, 557-569	2.3	75
55	Chemical Methods for Soil and Water Characterization 2004 , 503-557		
54	Effects of soil amendments at a heavy loading rate associated with cover crops as green manures on the leaching of nutrients and heavy metals from a calcareous soil. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2003 , 38, 865-81	2.2	5
53	Acidity Changes of Foreign Acidic Soils Introduced into Calcareous Soil Environment. <i>Journal of Plant Nutrition</i> , 2003 , 26, 1513-1526	2.3	
52	COMPOST UTILIZATION IN VEGETABLE CROP PRODUCTION SYSTEMS. Acta Horticulturae, 2003, 125-12	28 5.3	2
51	Phosphorus and Heavy Metal Attachment and Release in Sandy Soil Aggregate Fractions. <i>Soil Science Society of America Journal</i> , 2003 , 67, 1158-1167	2.5	61
50	Thresholds of Leaf Nitrogen for Optimum Fruit Production and Quality in Grapefruit. <i>Soil Science Society of America Journal</i> , 2003 , 67, 583-588	2.5	6
49	Nitrogen Transformation and Ammonia Volatilization From Biosolids and Compost Applied to Calcareous Soil. <i>Compost Science and Utilization</i> , 2003 , 11, 81-88	1.2	22
48	Nitrogen Mineralization of Cover Crop Residues in Calcareous Gravelly Soil. <i>Communications in Soil Science and Plant Analysis</i> , 2003 , 34, 299-313	1.5	2
47	Management of Flooding Effects on Growth of Vegetable and Selected Field Crops. <i>HortTechnology</i> , 2003 , 13, 610-616	1.3	27

46	Alternatives of Low Cost Soil Moisture Monitoring Devices for Vegetable Production in South Miami-Dade County. <i>Edis</i> , 2003 , 2003,	1.3	2
45	Endosulfan Losses through Runoff and Leaching from Calcareous Gravelly or Marl Soils. <i>Vadose Zone Journal</i> , 2003 , 2, 231-238	2.7	2
44	Influence of Coal Ash/Organic Waste Application on Distribution of Trace Metals in Soil, Plant, and Water 2003 , 251-263		3
43	Clinoptilolite zeolite and cellulose amendments to reduce ammonia volatilization in a calcareous sandy soil. <i>Plant and Soil</i> , 2002 , 247, 253-260	4.2	68
42	Release potential of phosphorus in Florida sandy soils in relation to phosphorus fractions and adsorption capacity. <i>Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering</i> , 2002 , 37, 793-809	2.3	16
41	Atmospheric deposition of nitrogen in a high lightning intensity area. <i>Communications in Soil Science and Plant Analysis</i> , 2002 , 33, 1671-1677	1.5	4
40	NITROGEN, FLOWERING AND PRODUCTION OF LYCHEE IN FLORIDA. <i>Acta Horticulturae</i> , 2001 , 221-224	0.3	3
39	Accumulation and fractionation of copper, iron, manganese, and zinc in calcareous soils amended with composts. <i>Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes</i> , 2001 , 36, 229-43	2.2	19
38	Utilization of Compost Increases Organic Carbon And Its Humin, Humic and Fulvic Acid Fractions In Calcareous Soil. <i>Compost Science and Utilization</i> , 2001 , 9, 156-162	1.2	23
37	Phosphorus-Sorption Characteristics of Calcareous Soils and Limestone from the Southern Everglades and Adjacent Farmlands. <i>Soil Science Society of America Journal</i> , 2001 , 65, 1404-1412	2.5	126
36	STEM AGE, WINTER TEMPERATURE AND FLOWERING OF LYCHEE IN SOUTH FLORIDA. <i>Acta Horticulturae</i> , 2001 , 237-240	0.3	4
35	THE ROLE OF SOIL FERTILITY IN INVASION OF BRAZILIAN PEPPER (SCHINUS TEREBINTHIFOLIUS) IN EVERGLADES NATIONAL PARK, FLORIDA1. <i>Soil Science</i> , 2001 , 166, 400-405	0.9	34
34	ALUMINUM AND IRON FRACTIONS AFFECTING PHOSPHORUS SOLUBILITY AND REACTIONS IN SELECTED SANDY SOILS. <i>Soil Science</i> , 2001 , 166, 940-948	0.9	18
33	Nutrient Availability and Changes in Microbial Biomass Of Organic Amendments During Field Incubation. <i>Compost Science and Utilization</i> , 2000 , 8, 293-302	1.2	7
32	Leaching Potentials of Nitrogen and Phosphorus in Substrates of Soil Disposal Mounds in Florida's Everglades*. <i>Journal of Soil Contamination</i> , 2000 , 9, 119-132		4
31	NITROGEN MINERALIZATION AND TRANSFORMATION FROM COMPOSTS AND BIOSOLIDS DURING FIELD INCUBATION IN A SANDY SOIL1. <i>Soil Science</i> , 2000 , 165, 161-169	0.9	53
30	NUTRIENT LEACHING POTENTIAL OF MATURE GRAPEFRUIT TREES IN A SANDY SOIL1. <i>Soil Science</i> , 2000 , 165, 748-758	0.9	5
29	Sorption-Desorption and Solution Concentration of Phosphorus in a Fertilized Sandy Soil. <i>Journal of Environmental Quality</i> , 1999 , 28, 1804-1810	3.4	25

28	Transport of Phosphorus and Fractionation of Residual Phosphorus in Various Horizons of a Spodosol. <i>Water, Air, and Soil Pollution</i> , 1999 , 109, 303-312	2.6	11
27	Effects of nitrogen fertilization of grapefruit trees on soil acidification and nutrient availability in a Riviera fine sand. <i>Plant and Soil</i> , 1998 , 206, 11-19	4.2	24
26	Fertilizer rates change root distribution of grapefruit trees on a poorly drained soil. <i>Journal of Plant Nutrition</i> , 1998 , 21, 1-11	2.3	6
25	A Rapid Nondestructive Technique to Predict Leaf Nitrogen Status of Grapefruit Tree with Various Nitrogen Fertilization Practices. <i>HortTechnology</i> , 1998 , 8, 81-86	1.3	17
24	Chemical composition of throughfall and stemflow from citrus canopies 1 Florida Agricultural Experiment Station Journal Series No. R-05064 <i>Journal of Plant Nutrition</i> , 1997 , 20, 1351-1360	2.3	5
23	Fractionation of Iron, Managanese, Aluminum, and Phosphorus in Selected Sandy Soils under Citrus Production. <i>Soil Science Society of America Journal</i> , 1997 , 61, 794-801	2.5	29
22	Leaching of Nitrate, Ammonium, and Phosphate From Compost Amended Soil Columns. <i>Compost Science and Utilization</i> , 1997 , 5, 63-67	1.2	29
21	Stem Flow, Throughfall, and Canopy Interception of Rainfall by Citrus Tree Canopies. <i>Hortscience: A Publication of the American Society for Hortcultural Science</i> , 1997 , 32, 1059-1160	2.4	8
20	CHEMICAL ASSOCIATION OF Cu, Zn, Mn, AND Pb IN SELECTED SANDY CITRUS SOILS. <i>Soil Science</i> , 1997 , 162, 181-188	0.9	54
19	Mechanism of silicon induced alleviation of aluminum phytotoxicity. <i>Journal of Plant Nutrition</i> , 1996 , 19, 1075-1087	2.3	14
18	Root distribution of grapefruit trees under dry granular broadcast vs. fertigation method. <i>Plant and Soil</i> , 1996 , 183, 79-84	4.2	36
17	Soilless Growing Media Amended With Sugarcane Filtercake Compost for Citrus Rootstock Production. <i>Compost Science and Utilization</i> , 1996 , 4, 21-25	1.2	12
16	Effect of methanol on soybean photosynthesis and chlorophyll. Journal of Plant Nutrition, 1995, 18, 18	751388	017
15	Citrus rootstock and carbon dioxide enriched irrigation influence on seedling emergence, growth, and nutrient content 1 Florida Agricultural Experiment Station Journal Series No. R-03991 <i>Journal of Plant Nutrition</i> , 1995 , 18, 1439-1448	2.3	8
14	Physiological changes in soybean treated with ozone and molybdenum. <i>Communications in Soil Science and Plant Analysis</i> , 1995 , 26, 1649-1658	1.5	2
13	ADSORPTION AND TRANSPORT OF NITRATE AND BROMIDE IN A SPODOSOL. <i>Soil Science</i> , 1995 , 160, 400-404	0.9	4
12	Adsorption/Desorption of toluene on clay minerals. <i>Journal of Soil Contamination</i> , 1994 , 3, 127-135		4
11	Adsorption of hydrocarbons by clay minerals from gasoline. <i>Journal of Hazardous Materials</i> , 1994 , 38, 105-112	12.8	12

10	Adsorption/desorption of hydrocarbons on clay minerals. <i>Chemosphere</i> , 1994 , 28, 627-638	8.4	17
9	Soybean response to carbon dioxide and molybdenum. <i>Communications in Soil Science and Plant Analysis</i> , 1994 , 25, 2571-2581	1.5	3
8	Photosynthetic changes in soybean with and without nitrogen and increased carbon dioxide. <i>Plant Science</i> , 1993 , 89, 1-4	5.3	7
7	Toxicity of gasoline aqueous-leachate through sand-clay columns. <i>Journal of Environmental Science and Health Part A: Environmental Science and Engineering</i> , 1993 , 28, 933-940		1
6	Sulphur dioxide and carbon dioxide induced changes in soybean physiology. <i>Plant Science</i> , 1992 , 83, 31-	- 34 3	16
5	Photosynthesis and Nitrogen Fixation in Soybean Exposed to Nitrogen Dioxide and Carbon Dioxide. Journal of Environmental Quality, 1992 , 21, 624-626	3.4	3
4	Response of cotton cultivars to aluminum in solutions with varying silicon concentrations. <i>Journal of Plant Nutrition</i> , 1989 , 12, 881-892	2.3	47
3	Evaluation of Three Aluminum Assay Techniques for Excluding Aluminum Complexed with Fluoride	2.5	13
	or Sulfate. <i>Soil Science Society of America Journal</i> , 1989 , 53, 38-44	2.5	
2	Biowaste-Derived, Hyperbranched Dendritic EDTA Analogue as an Anionic Biochelator with Superior Metal Affinity. ACS Sustainable Chemistry and Engineering,	8.3	1