
Paula C Castilho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368979/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Using polyphenols as a relevant therapy to diabetes and its complications, a review. Critical Reviews in Food Science and Nutrition, 2022, 62, 8355-8387.	5.4	13
2	Recent advances in β-galactosidase and fructosyltransferase immobilization technology. Critical Reviews in Food Science and Nutrition, 2021, 61, 2659-2690.	5.4	30
3	Extraction and characterization of hydroxyapatiteâ€based materials from grey triggerfish skin and black scabbardfish bones. International Journal of Applied Ceramic Technology, 2021, 18, 235-243.	1.1	14
4	Assessing the In Vitro Inhibitory Effects on Key Enzymes Linked to Type-2 Diabetes and Obesity and Protein Glycation by Phenolic Compounds of Lauraceae Plant Species Endemic to the Laurisilva Forest. Molecules, 2021, 26, 2023.	1.7	6
5	Evaluation of Fatty Acids Profile as a Useful Tool towards Valorization of By-Products of Agri-Food Industry. Foods, 2021, 10, 2867.	1.9	4
6	Metabolic profiling and antibacterial activity of Eryngium pristis Cham. & Schltdl prospecting for its use in the treatment of bacterial infections. Archives of Pharmacy and Pharmaceutical Sciences, 2021, 5, 020-028.	0.1	1
7	Immobilization of \hat{I}^2 -Galactosidase in Calcium Alginate Beads. , 2021, , 167-181.		0
8	Inhibition of α-amylase, α-glucosidase and pancreatic lipase by phenolic compounds of Rumex maderensis (Madeira sorrel). Influence of simulated gastrointestinal digestion on hyperglycaemia-related damage linked with aldose reductase activity and protein glycation. LWT - Food Science and Technology, 2020, 118, 108727.	2.5	42
9	Fish Processing Industry Residues: A Review of Valuable Products Extraction and Characterization Methods. Waste and Biomass Valorization, 2020, 11, 3223-3246.	1.8	56
10	Targeting NF-κB signaling pathway in cancer by dietary polyphenols. Critical Reviews in Food Science and Nutrition, 2020, 60, 2790-2800.	5.4	84
11	Release of health-related compounds during in vitro gastro-intestinal digestion of okara and okara fermented with Lactobacillus plantarum. Journal of Food Science and Technology, 2020, 57, 1061-1070.	1.4	14
12	A Novel and Simpler Alkaline Hydrolysis Methodology for Extraction of Ferulic Acid from Brewer's Spent Grain and its (Partial) Purification through Adsorption in a Synthetic Resin. Foods, 2020, 9, 600.	1.9	23
13	Phenolic Profile, Toxicity, Enzyme Inhibition, In Silico Studies, and Antioxidant Properties of Cakile maritima Scop. (Brassicaceae) from Southern Portugal. Plants, 2020, 9, 142.	1.6	26
14	Release of adsorbed ferulic acid in simulated gastrointestinal conditions. European Food Research and Technology, 2020, 246, 1297-1306.	1.6	2
15	Madeira moneywort (<i>Sibthorpia peregrina</i> L <i>.</i>) as a new source of verbascoside and its derivatives with potential phyto-pharmaceutical applications. Natural Product Research, 2019, 33, 3321-3325.	1.0	4
16	Effects of hydroxycinnamic acids on the glycolysis pathway. South African Journal of Botany, 2019, 120, 219-229.	1.2	7
17	Technological Aspects of the Production of Fructo and Galacto-Oligosaccharides. Enzymatic Synthesis and Hydrolysis. Frontiers in Nutrition, 2019, 6, 78.	1.6	116
18	Changes in the phenolic compositions of Elaeagnus umbellata and Sambucus lanceolata after in vitro gastrointestinal digestion and evaluation of their potential anti-diabetic properties. Food Research International, 2019, 122, 283-294.	2.9	38

#	Article	IF	CITATIONS
19	Evaluation of Rubus grandifolius L. (wild blackberries) activities targeting management of type-2 diabetes and obesity using in vitro models. Food and Chemical Toxicology, 2019, 123, 443-452.	1.8	44
20	Polyphenols of Myrica faya inhibit key enzymes linked to type II diabetes and obesity and formation of advanced glycation end-products (in vitro): Potential role in the prevention of diabetic complications. Food Research International, 2019, 116, 1229-1238.	2.9	27
21	Hypoglycemic, anti-glycation and antioxidant in vitro properties of two Vaccinium species from Macaronesia: A relation to their phenolic composition. Journal of Functional Foods, 2018, 40, 595-605.	1.6	49
22	Antioxidant polyphenols of Madeira sorrel (Rumex maderensis): How do they survive to in vitro simulated gastrointestinal digestion?. Food Chemistry, 2018, 259, 105-112.	4.2	38
23	Preserving bacteria with oligosaccharides and eco-friendly processes (Premium). Cryobiology, 2018, 85, 172-173.	0.3	Ο
24	Phenolic profiles of Lauraceae plant species endemic to Laurisilva forest: A chemotaxonomic survey. Industrial Crops and Products, 2017, 107, 1-12.	2.5	17
25	Evaluation of the inorganic content of six underused wild berries from Portugal: Potential new sources of essential minerals. Journal of Food Composition and Analysis, 2017, 59, 153-160.	1.9	6
26	Polyphenolic profile and antioxidant activities of Madeiran elderberry (Sambucus lanceolata) as affected by simulated in vitro digestion. Food Research International, 2017, 100, 404-410.	2.9	62
27	Evaluation of Asteraceae herbal extracts in the management of diabetes and obesity. Contribution of caffeoylquinic acids on the inhibition of digestive enzymes activity and formation of advanced glycation end-products (inÂvitro). Phytochemistry, 2017, 143, 29-35.	1.4	69
28	In vitro studies on the effect of watercress juice on digestive enzymes relevant to type 2 diabetes and obesity and antioxidant activity. Journal of Food Biochemistry, 2017, 41, e12335.	1.2	16
29	Porosity in ion-exchanged and acid activated clays evaluated using n-nonane pre-adsorption. Microporous and Mesoporous Materials, 2016, 232, 238-247.	2.2	1
30	Phytochemical Profile, Chemotaxonomic Studies, and <i>In Vitro</i> Antioxidant Activities of Two Endemisms from Madeira Archipelago: <i>Melanoselinum</i> Â <i>decipiens</i> and <i>Monizia</i> Â <i>edulis</i> (Apiaceae). Chemistry and Biodiversity, 2016, 13, 1290-1306.	1.0	15
31	Ulex europaeus: from noxious weed to source of valuable isoflavones and flavanones. Industrial Crops and Products, 2016, 90, 9-27.	2.5	25
32	Bioactive type A proanthocyanins from fungus Laurobasidium lauri. Planta Medica, 2016, 81, S1-S381.	0.7	0
33	Endemic Asteraceae from Madeira archipelago: A relation of hypoglycemic activity to their polyphenolic composition. Planta Medica, 2016, 81, S1-S381.	0.7	Ο
34	Acid-modified clays as green catalysts for the hydrolysis of hemicellulosic oligosaccharides. Catalysis Science and Technology, 2015, 5, 4072-4080.	2.1	14
35	HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Industrial Crops and Products, 2015, 69, 80-90.	2.5	82
36	Analysis of phenolic compounds in leaves from endemic trees from Madeira Island. A contribution to the chemotaxonomy of Laurisilva forest species. Industrial Crops and Products, 2015, 64, 135-151.	2.5	32

#	Article	IF	CITATIONS
37	Autohydrolysis of Annona cherimola Mill. seeds: Optimization, modeling and products characterization. Biochemical Engineering Journal, 2015, 104, 2-9.	1.8	22
38	Phenolic screening by HPLC–DAD–ESI/MSn and antioxidant capacity of leaves, flowers and berries of Rubus grandifolius Lowe. Industrial Crops and Products, 2015, 73, 28-40.	2.5	27
39	Establishment of Monstera deliciosa fruit volatile metabolomic profile at different ripening stages using solid-phase microextraction combined with gas chromatography–mass spectrometry. Food Research International, 2015, 67, 409-417.	2.9	21
40	Selective methoxylation of α-pinene to α-terpinyl methyl ether over Al3+ ion-exchanged clays. Applied Catalysis A: General, 2015, 489, 171-179.	2.2	12
41	Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chemistry, 2015, 173, 14-30.	4.2	178
42	Antioxidant Capacity, Cytotoxicity and Antimycobacterial Activity of Madeira Archipelago Endemic Helichrysum Dietary and Medicinal Plants. Antioxidants, 2014, 3, 713-729.	2.2	11
43	Hydrolysis of Oligosaccharides Over Solid Acid Catalysts: A Review. ChemSusChem, 2014, 7, 1010-1019.	3.6	100
44	Determination of vitamin C in foods: Current state of method validation. Journal of Chromatography A, 2014, 1369, 2-17.	1.8	65
45	<i>Myrica faya</i> : A New Source of Antioxidant Phytochemicals. Journal of Agricultural and Food Chemistry, 2014, 62, 9722-9735.	2.4	50
46	Artemisia annua L.: Essential oil and acetone extract composition and antioxidant capacity. Industrial Crops and Products, 2013, 45, 170-181.	2.5	48
47	Selective methoxylation of limonene over ion-exchanged and acid-activated clays. Applied Catalysis A: General, 2013, 467, 38-46.	2.2	10
48	Characterization of phenolic compounds and antioxidant activity of ethanolic extracts from flowers of Andryala glandulosa ssp. varia (Lowe ex DC.) R.Fern., an endemic species of Macaronesia region. Industrial Crops and Products, 2013, 42, 573-582.	2.5	16
49	Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs iodometric titration as analytical methods. LWT - Food Science and Technology, 2013, 50, 489-495.	2.5	57
50	An attractive, sensitive and high-throughput strategy based on microextraction by packed sorbent followed by UHPLC-PDA analysis for quantification of hydroxybenzoic and hydroxycinnamic acids in wines. Microchemical Journal, 2013, 106, 129-138.	2.3	56
51	<i>In vitro</i> and <i>in vivo</i> assessment of the effect of <i><scp>L</scp>aurus novocanariensis</i> oil and essential oil in human skin. International Journal of Cosmetic Science, 2012, 34, 546-550.	1.2	13
52	Phenolic composition and antioxidant capacity of cultivated artichoke, Madeira cardoon and artichokeâ€based dietary supplements. Food Research International, 2012, 48, 712-724.	2.9	78
53	Evaluation of the antimicrobial and antioxidant activities of essential oils, extracts and their main components from oregano from Madeira Island, Portugal. Food Control, 2012, 23, 552-558.	2.8	81
54	Validation of a HPLC-DAD–ESI/MSn method for caffeoylquinic acids separation, quantification and identification in medicinal Helichrysum species from Macaronesia. Food Research International, 2012, 45, 362-368.	2.9	30

#	Article	IF	CITATIONS
55	<i>Helichrysum monizii</i> Lowe: Phenolic Composition and Antioxidant Potential. Phytochemical Analysis, 2012, 23, 72-83.	1.2	24
56	An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Analytical and Bioanalytical Chemistry, 2012, 403, 1049-1058.	1.9	86
57	Antioxidant potential of Artemisia argentea L'Hér alcoholic extract and its relation with the phenolic composition. Food Research International, 2011, 44, 1620-1631.	2.9	89
58	Characterisation of phenolic acid derivatives and flavonoids from different morphological parts of Helichrysum obconicum by a RP-HPLC–DAD-(â^')–ESI-MSn method. Food Chemistry, 2011, 129, 333-344.	4.2	91
59	Characterization of <i>Annona cherimola</i> Mill. Seed Oil from Madeira Island: a Possible Biodiesel Feedstock. JAOCS, Journal of the American Oil Chemists' Society, 2010, 87, 429-436.	0.8	10
60	Characterization of phenolic compounds in <i>Helichrysum melaleucum</i> by highâ€performance liquid chromatography with onâ€line ultraviolet and mass spectrometry detection. Rapid Communications in Mass Spectrometry, 2010, 24, 1851-1868.	0.7	88
61	Analysis of phenolic compounds from different morphological parts of <i>Helichrysum devium</i> by liquid chromatography with onâ€line UV and electrospray ionization mass spectrometric detection. Rapid Communications in Mass Spectrometry, 2009, 23, 3939-3953.	0.7	41
62	CHEMICAL COMPOSITION AND BIOACTIVITY OF ESSENTIAL OILS AND EXTRACTS FROM OREGANO FROM MADEIRA ISLAND, PORTUGAL. Acta Horticulturae, 2009, , 213-220.	0.1	1
63	Polyanxanthone A, B and C, three xanthones from the wood trunk of Garcinia polyantha Oliv Phytochemistry, 2008, 69, 1013-1017.	1.4	28
64	Quantification of artemisinin in <i>Artemisia annua</i> extracts by ¹ Hâ€NMR. Phytochemical Analysis, 2008, 19, 329-334.	1.2	39
65	Bioactivity of Mentha cervina (Hortel $ ilde{A} \pm$ da Ribeira) from Southern Portugal. Planta Medica, 2008, 74, .	0.7	0
66	In vitro antiproliferative activity of Xanthones and Guttiferones from Securidaca spp. Planta Medica, 2008, 74, .	0.7	0
67	Synergistic antimycobacterial activities of sesquiterpene lactones from Laurus spp Journal of Antimicrobial Chemotherapy, 2007, 59, 548-552.	1.3	60
68	Composition and antimicrobial activity of the essential oil ofClinopodium ascendens (Jordan) Sampaio from Madeira. Flavour and Fragrance Journal, 2007, 22, 139-144.	1.2	22
69	Catalytic conversion of limonene over acid activated Serra de Dentro (SD) bentonite. Applied Catalysis A: General, 2007, 318, 108-120.	2.2	53
70	Securidacaxanthones B and C, xanthones from Securidaca longepedunculata (Polygalaceae). Planta Medica, 2007, 73, .	0.7	3
71	Antimicobacterial and antioxidant activitiy of Helichrysum devium Johns. from Madeira Archipelago. Planta Medica, 2007, 73, .	0.7	0
72	Influence of exchange cations on the catalytic conversion of limonene over Serra de Dentro (SD) and SAz-1 clays. Applied Catalysis A: General, 2006, 311, 172-184.	2.2	26

#	Article	IF	CITATIONS
73	Composition and Acaricidal Activity of <i>Laurus novocanariensis</i> and <i>Laurus nobilis</i> Essential Oils Against <i>Psoroptes cuniculi</i> . Journal of Essential Oil Research, 2006, 18, 111-114.	1.3	36
74	PORTO SANTO CLAYS AS ENVIRONMENTALLY FRIENDLY CATALYSTS FOR THE CONVERSION OF RENEWABLE TERPENE FEEDSTOCKS. LIMONENE AROMATIZATION TO P-CYMENE. Environmental Engineering and Management Journal, 2006, 5, 275-284.	0.2	0
75	Characterization of laurel fruit oil from Madeira Island, Portugal. JAOCS, Journal of the American Oil Chemists' Society, 2005, 82, 863-868.	0.8	21
76	Direct identification and quantitative determination of costunolide and dehydrocostuslactone in the fixed oil ofLaurus novocanariensis by13C-NMR spectroscopy. Phytochemical Analysis, 2005, 16, 104-107.	1.2	28
77	Characterization of triacylglycerols in madeira laurel oil by HPLC-atmospheric pressure chemical ionization-MS. JAOCS, Journal of the American Oil Chemists' Society, 2004, 81, 913-919.	0.8	12
78	Infrared spectroscopic studies of hydrogen bonding in substituted nitrophenols: substituent and solvent effects. Vibrational Spectroscopy, 1992, 3, 167-180.	1.2	2