
Gian Marco Luna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368931/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Time to integrate biotechnological approaches into fish gut microbiome research. Current Opinion in Biotechnology, 2022, 73, 121-127.	6.6	30
2	Partitioning and sources of microbial pollution in the Venice Lagoon. Science of the Total Environment, 2022, 818, 151755.	8.0	4
3	Seasonal Changes in Microbial Communities Associated With the Jewel Anemone Corynactis viridis. Frontiers in Marine Science, 2021, 8, .	2.5	6
4	Occurrence and distribution of microbial pollutants in coastal areas of the Adriatic Sea influenced by river discharge. Environmental Pollution, 2021, 285, 117672.	7.5	18
5	Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait). Microbial Ecology, 2020, 79, 823-839.	2.8	10
6	Prokaryotic community composition and distribution in coastal sediments following a Po river flood event (northern Adriatic Sea, Italy). Estuarine, Coastal and Shelf Science, 2020, 233, 106547.	2.1	10
7	Temporal Changes in Microbial Communities Beneath Fish Farm Sediments Are Related to Organic Enrichment and Fish Biomass Over a Production Cycle. Frontiers in Marine Science, 2020, 7, .	2.5	16
8	Major Role of Surrounding Environment in Shaping Biofilm Community Composition on Marine Plastic Debris. Frontiers in Marine Science, 2020, 7, .	2.5	69
9	Plastics occurrence in juveniles of Engraulis encrasicolus and Sardina pilchardus in the Southern Tyrrhenian Sea. Science of the Total Environment, 2020, 718, 137457.	8.0	60
10	Plastics occurrence in the gastrointestinal tract of Zeus faber and Lepidopus caudatus from the Tyrrhenian Sea. Marine Pollution Bulletin, 2019, 146, 408-416.	5.0	39
11	Antibiotic disturbance affects aquatic microbial community composition and food web interactions but not community resilience. Molecular Ecology, 2019, 28, 1170-1182.	3.9	39
12	Living foraminiferal assemblages in two submarine canyons (Polcevera and Bisagno) of the Ligurian basin (Mediterranean Sea). Progress in Oceanography, 2019, 173, 114-133.	3.2	7
13	Biostimulation of in situ microbial degradation processes in organically-enriched sediments mitigates the impact of aquaculture. Chemosphere, 2019, 226, 715-725.	8.2	25
14	Status of faecal pollution in ports: A basin-wide investigation in the Adriatic Sea. Marine Pollution Bulletin, 2019, 147, 219-228.	5.0	25
15	Massive shelf dense water flow influences plankton community structure and particle transport over long distance. Scientific Reports, 2018, 8, 4554.	3.3	7
16	Developing and testing an Early Warning System for Non Indigenous Species and Ballast Water Management. Journal of Sea Research, 2018, 133, 100-111.	1.6	17
17	Planktonic prokaryote and protist communities in a submarine canyon system in the Ligurian Sea (NW) Tj ETQq1	10,7843 3.2	14 rgBT /Ov
18	Heavy-metal resistant microorganisms in sediments from submarine canyons and the adjacent continental slope in the northeastern Ligurian margin (Western Mediterranean Sea). Progress in	3.2	9

Oceanography, 2018, 168, 155-168.

GIAN MARCO LUNA

#	Article	IF	CITATIONS
19	Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Molecular Ecology, 2017, 26, 5961-5973.	3.9	35
20	Unveiling the role and life strategies of viruses from the surface to the dark ocean. Science Advances, 2017, 3, e1602565.	10.3	113
21	Surfing and dining on the "plastisphere†Microbial life on plastic marine debris. Advances in Oceanography and Limnology, 2017, 8, .	0.6	45
22	Next generation sequencing reveals distinct fecal pollution signatures in aquatic sediments across gradients of anthropogenic influence. Advances in Oceanography and Limnology, 2016, 7, .	0.6	11
23	Dense water plumes modulate richness and productivity of deep sea microbes. Environmental Microbiology, 2016, 18, 4537-4548.	3.8	17
24	Patterns of benthic bacterial diversity in coastal areas contaminated by heavy metals, polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Frontiers in Microbiology, 2015, 6, 1053.	3.5	145
25	Adhesion of marine cryptic <i>Escherichia</i> isolates to human intestinal epithelial cells. ISME Journal, 2015, 9, 508-515.	9.8	28
26	Biotechnological Potential of Marine Microbes. , 2015, , 651-661.		5
27	Understanding the association of Escherichia coli with diverse macroalgae in the lagoon of Venice. Scientific Reports, 2015, 5, 10969.	3.3	25
28	The ocean sampling day consortium. GigaScience, 2015, 4, 27.	6.4	185
29	Diversity of marine microbes in a changing Mediterranean Sea. Rendiconti Lincei, 2015, 26, 49-58.	2.2	15
30	Distribution of Escherichia coli in a coastal lagoon (Venice, Italy): Temporal patterns, genetic diversity and the role of tidal forcing. Water Research, 2015, 87, 155-165.	11.3	17
31	A microbial perspective on biological invasions in aquatic ecosystems. Hydrobiologia, 2015, 746, 13-22.	2.0	40
32	Extracellular DNA can preserve the genetic signatures of present and past viral infection events in deep hypersaline anoxic basins. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133299.	2.6	69
33	The marine environment as a reservoir of enterococci carrying resistance and virulence genes strongly associated with clinical strains. Environmental Microbiology Reports, 2014, 6, 184-190.	2.4	33
34	Diversity of rare and abundant bacteria in surface waters of the Southern Adriatic Sea. Marine Genomics, 2014, 17, 9-15.	1.1	24
35	Patterns and drivers of bacterial α―and βâ€diversity across vertical profiles from surface to subsurface sediments. Environmental Microbiology Reports, 2013, 5, 731-739.	2.4	23
36	Impact of aquaculture on benthic virus–prokaryote interactions in the Mediterranean Sea. Water Research, 2013, 47, 1156-1168.	11.3	27

#	Article	IF	CITATIONS
37	Epidemic <i>Escherichia coli</i> ST131 and <i>Enterococcus faecium</i> ST17 in Coastal Marine Sediments from an Italian Beach. Environmental Science & Technology, 2013, 47, 13772-13780.	10.0	46
38	Aquaculture Can Promote the Presence and Spread of Antibiotic-Resistant Enterococci in Marine Sediments. PLoS ONE, 2013, 8, e62838.	2.5	126
39	New Sequence Types and Multidrug Resistance among Pathogenic Escherichia coli Isolates from Coastal Marine Sediments. Applied and Environmental Microbiology, 2012, 78, 3916-3922.	3.1	55
40	Antibiotic-Resistant Enterococci in Seawater and Sediments from a Coastal Fish Farm. Microbial Drug Resistance, 2012, 18, 502-509.	2.0	69
41	The CORALZOO project: a synopsis of four years of public aquarium science. Journal of the Marine Biological Association of the United Kingdom, 2012, 92, 753-768.	0.8	27
42	A new molecular approach based on qPCR for the quantification of fecal bacteria in contaminated marine sediments. Journal of Biotechnology, 2012, 157, 446-453.	3.8	33
43	High prokaryotic biodiversity associated with gut contents of the holothurian Molpadia musculus from the Nazaré Canyon (NE Atlantic). Deep-Sea Research Part I: Oceanographic Research Papers, 2012, 63, 82-90.	1.4	22
44	The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling. Global Biogeochemical Cycles, 2012, 26, .	4.9	56
45	Biodiversity of Prokaryotic Communities Associated with the Ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa). PLoS ONE, 2012, 7, e39926.	2.5	32
46	High bacterial biodiversity increases degradation performance of hydrocarbons during bioremediation of contaminated harbor marine sediments. Environmental Pollution, 2012, 167, 85-92.	7.5	105
47	Technical Note: Determination of the metabolically active fraction of benthic foraminifera by means of Fluorescent In Situ Hybridization (FISH). Biogeosciences, 2011, 8, 2075-2088.	3.3	11
48	Preservation, origin and genetic imprint of extracellular DNA in permanently anoxic deep-sea sediments. Molecular Ecology, 2011, 20, 642-654.	3.9	148
49	<i>Vibrio harveyi</i> as a causative agent of the White Syndrome in tropical stony corals. Environmental Microbiology Reports, 2010, 2, 120-127.	2.4	86
50	Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS ONE, 2010, 5, e11832.	2.5	321
51	Extraintestinal <i>Escherichia coli</i> Carrying Virulence Genes in Coastal Marine Sediments. Applied and Environmental Microbiology, 2010, 76, 5659-5668.	3.1	58
52	Archaeal Diversity in Deep-Sea Sediments Estimated by Means of Different Terminal-Restriction Fragment Length Polymorphisms (T-RFLP) Protocols. Current Microbiology, 2009, 59, 356-361.	2.2	19
53	Prokaryote diversity and viral production in deep-sea sediments and seamounts. Deep-Sea Research Part II: Topical Studies in Oceanography, 2009, 56, 738-747.	1.4	52
54	Prokaryote Diversity and Virus Abundance in Shallow Hydrothermal Vents of the Mediterranean Sea (Panarea Island) and the Pacific Ocean (North Sulawesi-Indonesia). Microbial Ecology, 2008, 55, 626-639.	2.8	68

#	Article	IF	CITATIONS
55	RAPID IDENTIFICATION OF <i>PSEUDOMONAS</i> SPP. FROM AQUATIC SAMPLES USING TERMINAL RESTRICTION FRAGMENT LENGTH POLYMORPHISM ANALYSIS. Journal of Rapid Methods and Automation in Microbiology, 2008, 16, 351-373.	0.4	2
56	Measuring Species Richness Based on Microbial Community Fingerprints: the Emperor Has No Clothes. Applied and Environmental Microbiology, 2007, 73, 2399-2401.	3.1	100
57	Bacteria associated with the rapid tissue necrosis of stony corals. Environmental Microbiology, 2007, 9, 1851-1857.	3.8	53
58	DNA extraction procedure: a critical issue for bacterial diversity assessment in marine sediments. Environmental Microbiology, 2006, 8, 308-320.	3.8	135
59	Comparison of Two Fingerprinting Techniques, Terminal Restriction Fragment Length Polymorphism and Automated Ribosomal Intergenic Spacer Analysis, for Determination of Bacterial Diversity in Aquatic Environments. Applied and Environmental Microbiology, 2006, 72, 5982-5989.	3.1	163
60	Exo-enzymatic activities and dissolved organic pools in relation with mucilage development in the Northern Adriatic Sea. Science of the Total Environment, 2005, 353, 189-203.	8.0	44
61	Bacterial diversity in deep Mediterranean sediments: relationship with the active bacterial fraction and substrate availability. Environmental Microbiology, 2004, 6, 745-753.	3.8	65
62	Sustainable impact of mussel farming in the Adriatic Sea (Mediterranean Sea): evidence from biochemical, microbial and meiofaunal indicators. Marine Pollution Bulletin, 2004, 49, 325-333.	5.0	93
63	Benthic bacterial response to variable estuarine water inputs. FEMS Microbiology Ecology, 2004, 50, 185-194.	2.7	22
64	Influence of the mineralogical composition on microbial activities in marine sediments: an experimental approach. Chemistry and Ecology, 2003, 19, 399-410.	1.6	10
65	Aquaculture impact on benthic microbes and organic matter cycling in coastal mediterranean sediments: A synthesis. Chemistry and Ecology, 2003, 19, 59-65.	1.6	27
66	Large Fraction of Dead and Inactive Bacteria in Coastal Marine Sediments: Comparison of Protocols for Determination and Ecological Significance. Applied and Environmental Microbiology, 2002, 68, 3509-3513.	3.1	196