Rolando Castillo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/636890/publications.pdf

Version: 2024-02-01

54 papers

1,167 citations

394421 19 h-index 33 g-index

54 all docs

54 docs citations

54 times ranked 1298 citing authors

#	Article	IF	Citations
1	Metal particle catalysed production of nanoscale BN structures. Chemical Physics Letters, 1996, 259, 568-573.	2.6	282
2	Monolayers of Apolipoproteins at the Air/Water Interface. Journal of Physical Chemistry B, 2001, 105, 5757-5765.	2.6	76
3	Multiscale molecular dynamics simulations of micelles: coarse-grain for self-assembly and atomic resolution for finer details. Soft Matter, 2012, 8, 9005.	2.7	57
4	Cyclodextrin-Based Self-Assembled Nanotubes at the Water/Air Interface. Journal of Physical Chemistry B, 2007, 111, 12625-12630.	2.6	40
5	Microrheology and Characteristic Lengths in Wormlike Micelles made of a Zwitterionic Surfactant and SDS in Brine. Journal of Physical Chemistry B, 2010, 114, 12193-12202.	2.6	40
6	Disorder-to-order conformational transitions in protein structure and its relationship to disease. Molecular and Cellular Biochemistry, 2009, 330, 105-120.	3.1	37
7	A rheological study in the dilute regime of the worm-micelle fluid made of zwitterionic surfactant (TDPS), anionic surfactant (SDS), and brine. Journal of Colloid and Interface Science, 2010, 348, 152-158.	9.4	37
8	Pattern Formation and Morphology Evolution in Langmuir Monolayers. Journal of Physical Chemistry B, 2006, 110, 4824-4835.	2.6	33
9	Langmuir monolayers of C17, C19, and C21 fatty acids: Textures, phase transitions, and localized oscillations. Journal of Chemical Physics, 1999, 110, 7021-7030.	3.0	32
10	Shear-induced structures formed during thixotropic loops in dilute worm-micelle solutions. Journal of Colloid and Interface Science, 2007, 312, 481-488.	9.4	32
11	Aqueous foams and emulsions stabilized by mixtures of silica nanoparticles and surfactants: A state-of-the-art review. Chemical Engineering Journal Advances, 2021, 7, 100116.	5.2	31
12	Domain Growth, Pattern Formation, and Morphology Transitions in Langmuir Monolayers. A New Growth Instability. Journal of Physical Chemistry B, 2010, 114, 5034-5046.	2.6	30
13	Mean-Square Displacement of Particles in Slightly Interconnected Polymer Networks. Journal of Physical Chemistry B, 2014, 118, 1146-1158.	2.6	30
14	Localized oscillations and Fraunhofer diffraction in crystalline phases of a monolayer. Journal of Chemical Physics, 2001, 115, 8178-8184.	3.0	28
15	Phase Transitions of Phospholipid Monolayers Penetrated by Apolipoproteins. Journal of Physical Chemistry B, 2004, 108, 7307-7315.	2.6	28
16	The Role of Boron Nitride in Graphite Plasma Arcs. Fullerenes, Nanotubes, and Carbon Nanostructures, 1998, 6, 787-800.	0.6	27
17	The Wormlike Micellar Solution made of a Zwitterionic Surfactant (TDPS), an Anionic Surfactant (SDS), and Brine in the Semidilute Regime. Journal of Physical Chemistry B, 2010, 114, 8917-8925.	2.6	23
18	Microrheology of solutions embedded with thread-like supramolecular structures. Soft Matter, 2011, 7, 5926.	2.7	22

#	Article	IF	CITATIONS
19	A dynamic light scattering investigation of the nucleation and growth of thaumatin crystals. Journal of Crystal Growth, 2001, 232, 119-131.	1.5	19
20	The dioctadecylamine monolayer: Textures, phase transitions, and dendritic growth. Journal of Chemical Physics, 2003, 119, 5644-5653.	3.0	19
21	Out-of-Equilibrium Assembly of Colloidal Particles at Air/Water Interface Tuned by Their Chemical Modification. Journal of Physical Chemistry C, 2016, 120, 16879-16886.	3.1	18
22	Alignment of worm-like micelles at intermediate and high shear rates. Journal of Colloid and Interface Science, 2020, 560, 618-625.	9.4	17
23	Lipid dependant disorder-to-order conformational transitions in apolipoprotein CI derived peptides. Biochemical and Biophysical Research Communications, 2008, 365, 8-15.	2.1	15
24	Flow Velocity Profiles and Shear Banding Onset in a Semidilute Wormlike Micellar System under Couette Flow. Journal of Physical Chemistry B, 2009, 113, 15485-15494.	2.6	14
25	Microenvironmentally controlled secondary structure motifs of apolipoprotein A-I derived peptides. Molecular and Cellular Biochemistry, 2014, 393, 99-109.	3.1	13
26	Phase Transitions and Conformational Changes in Monolayers of Human Apolipoproteins CI and All. Journal of Physical Chemistry B, 2003, 107, 11117-11124.	2.6	12
27	In search of new structural states of exchangeable apolipoproteins. Biochemical and Biophysical Research Communications, 2004, 324, 467-470.	2.1	12
28	Measurement of the force between uncharged colloidal particles trapped at a flat air/water interface. Soft Matter, 2019, 15, 5815-5818.	2.7	12
29	Brewster angle microscopy of fullerene monolayers. Physica A: Statistical Mechanics and Its Applications, 1997, 236, 105-113.	2.6	11
30	Interactions and Conformations of \hat{l}_{\pm} -Helical Human Apolipoprotein CI on Hydrophilic and on Hydrophobic Substrates. Journal of Physical Chemistry B, 2004, 108, 20442-20450.	2.6	11
31	Structure, rheology, and microrheology of wormlike micelles made of PB–PEO diblock copolymers. Soft Matter, 2018, 14, 7264-7276.	2.7	10
32	Forces between Hydrophilic Surfaces Adsorbed with Apolipoprotein All Alpha Helices. Langmuir, 2008, 24, 8568-8575.	3.5	9
33	Structural Changes in Wormlike Micelles on the Incorporation of Small Photoswitchable Molecules. Journal of Physical Chemistry B, 2019, 123, 9481-9490.	2.6	9
34	Growth and morphology in Langmuir monolayers. Europhysics Letters, 2006, 74, 799-805.	2.0	8
35	Characterization of dynamics and internal structure of a mixed-surfactant wormlike micellar system using NMR and rheometry. Soft Matter, 2012, 8, 6950.	2.7	8
36	Mechanical Properties of DPPC–POPE Mixed Langmuir Monolayers. Langmuir, 2019, 35, 16734-16744.	3.5	8

#	Article	IF	Citations
37	The thermal diffusion factor of the van der Waals binary mixture. Journal of Chemical Physics, 1997, 106, 8204-8215.	3.0	6
38	Living polymerization of \hat{l}_{\pm} -methylstyrene in tetrahydrofuran followed by dynamic light scattering near its polymerization temperature. Journal of Chemical Physics, 1999, 110, 10657-10659.	3.0	6
39	Bilayers of Janus and homogeneous particle mixtures trapped at an air/water interface. Soft Matter, 2018, 14, 2582-2585.	2.7	6
40	Absorption effects in diffusing wave spectroscopy. Applied Optics, 2014, 53, 4675.	1.8	5
41	Worm-like micelles in water solutions of 1, 4 poly (1, 3-butadiene)-polyethylene oxide diblock copolymer. European Physical Journal E, 2014, 37, 10.	1.6	5
42	Selective incorporation of one of the isomers of a photoswitchable molecule in wormlike micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 610, 125903.	4.7	5
43	Micellar entanglement and its relation to the elastic behavior of wormlike micelle fluids. Journal of Colloid and Interface Science, 2022, 626, 1015-1027.	9.4	5
44	The mutual diffusion coefficient of the methanol-n-hexane mixture around the coexistence line. Fluid Phase Equilibria, 1998, 150-151, 797-805.	2.5	4
45	Measurement of the capillary interaction force between Janus colloidal particles trapped at a flat air/water interface. Soft Matter, 2020, 16, 5910-5914.	2.7	4
46	A survey of the phases and the metastable phases in the ternary systems of divalent metal [bis-2-ethylhexyl]-sulphosuccinate/iso-octane/water. Journal of Physics Condensed Matter, 2002, 14, 4805-4814.	1.8	2
47	Fraunhofer diffraction in the crystalline phases of a monolayer. Journal of Physics Condensed Matter, 2002, 14, 4767-4775.	1.8	2
48	The cis-bis(decanoate)tin phthalocyanine/DPPC film at the air/water interface. Journal of Colloid and Interface Science, 2012, 369, 256-266.	9.4	2
49	Measuring mesoscopic scales in complex fluids embedded with giant cylindrical micelles with diffusing wave spectroscopy micro-rheology. Journal of Physics Condensed Matter, 2022, 34, 034003.	1.8	2
50	Mutual diffusion coefficients of alkaline-earth and third-family metal chlorides in aqueous solutions. International Journal of Thermophysics, 1996, 17, 771-780.	2.1	1
51	Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine. Thin Solid Films, 2012, 520, 2211-2219.	1.8	1
52	Tuning the Viscoelastic-Gel Transition of Single-Wall Carbon Nanotubes Embedded in pH-Responsive Polyelectrolyte Solutions. Journal of Physical Chemistry B, 2018, 122, 348-359.	2.6	1
53	Micelles and reverse micelles in the nickel bis(2-ethylhexyl) sulfosuccinate/water/isooctane microemulsion. Journal of Colloid and Interface Science, 2004, 280, 276-278.	9.4	0
54	A dynamical light scattering technique and its application in viscoelastic networks in soft matter. , $2011, , .$		0