Daniel Skuk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368781/publications.pdf Version: 2024-02-01

DANIEL SKILK

#	Article	IF	CITATIONS
1	Human Muscle Precursor Cells Form Human-Derived Myofibers in Skeletal Muscles of Nonhuman Primates: A Potential New Preclinical Setting to Test Myogenic Cells of Human Origin for Cell Therapy of Myopathies. Journal of Neuropathology and Experimental Neurology, 2020, 79, 1265-1275.	1.7	2
2	A Comment on "Muscle Xenografts Reproduce Key Molecular Features of Facioscapulohumeral Muscular Dystrophy― What Is New and What Has Already been Done and Reported but Was Not Quoted?. Cell Transplantation, 2020, 29, 096368972093912.	2.5	0
3	Myotubes Formed De Novo by Myoblasts Injected into the Scar of Myocardial Infarction Persisted for 16 Years in a Patient: Importance for Regenerative Medicine in Degenerative Myopathies. Stem Cells Translational Medicine, 2019, 8, 313-314.	3.3	2
4	Sarcolemmal Complement Membrane Attack Complex Deposits During Acute Rejection of Myofibers in Nonhuman Primates. Journal of Neuropathology and Experimental Neurology, 2019, 78, 38-46.	1.7	1
5	Cell Therapy in Myology: Dynamics of Muscle Precursor Cell Death after Intramuscular Administration in Non-human Primates. Molecular Therapy - Methods and Clinical Development, 2017, 5, 232-240.	4.1	14
6	The Process of Engraftment of Myogenic Cells in Skeletal Muscles of Primates. Cell Transplantation, 2017, 26, 1763-1779.	2.5	10
7	De Novo Circulating Antidonor's Cell Antibodies During Induced Acute Rejection of Allogeneic Myofibers in Myogenic Cell Transplantation: A Study in Nonhuman Primates. Transplantation Direct, 2017, 3, e228.	1.6	4
8	CD56+ Muscle Derived Cells but Not Retinal NG2+ Perivascular Cells of Nonhuman Primates are Myogenic after Intramuscular Transplantation in Immunodeficient Mice. Journal of Stem Cell Research & Therapy, 2017, 07, .	0.3	2
9	Confirmation of donor-derived dystrophin in a duchenne muscular dystrophy patient allotransplanted with normal myoblasts. Muscle and Nerve, 2016, 54, 979-981.	2.2	18
10	Cell therapy in muscular dystrophies: many promises in mice and dogs, few facts in patients. Expert Opinion on Biological Therapy, 2015, 15, 1307-1319.	3.1	39
11	Intramuscular Transplantation of Myogenic Cells in Primates: Importance of Needle Size, Cell Number, and Injection Volume. Cell Transplantation, 2014, 23, 13-25.	2.5	42
12	First Study of Intra-Arterial Delivery of Myogenic Mononuclear Cells to Skeletal Muscles in Primates. Cell Transplantation, 2014, 23, 141-150.	2.5	14
13	Electroporation as a Method to Induce Myofiber Regeneration and Increase the Engraftment of Myogenic Cells in Skeletal Muscles of Primates. Journal of Neuropathology and Experimental Neurology, 2013, 72, 723-734.	1.7	20
14	Cell Transplantation and "Stem Cell Therapy―in the Treatment of Myopathies: Many Promises in Mice, Few Realities in Humans. ISRN Transplantation, 2013, 2013, 1-25.	0.2	3
15	Acute Rejection of Myofibers in Nonhuman Primates: Key Histopathologic Features. Journal of Neuropathology and Experimental Neurology, 2012, 71, 398-412.	1.7	16
16	Fibrin Gel Improves the Survival of Transplanted Myoblasts. Cell Transplantation, 2012, 21, 127-138.	2.5	32
17	AG490 Improves the Survival of Human Myoblasts in Vitro and in Vivo. Cell Transplantation, 2012, 21, 2665-2676.	2.5	6
18	Losartan Enhances the Success of Myoblast Transplantation. Cell Transplantation, 2012, 21, 139-152.	2.5	29

DANIEL SKUK

#	Article	IF	CITATIONS
19	Necrosis, sarcolemmal damage and apoptotic events in myofibers rejected by CD8+ lymphocytes: Observations in nonhuman primates. Neuromuscular Disorders, 2012, 22, 997-1005.	0.6	11
20	Transplanted Myoblasts Can Migrate Several Millimeters to Fuse With Damaged Myofibers in Nonhuman Primate Skeletal Muscle. Journal of Neuropathology and Experimental Neurology, 2011, 70, 770-778.	1.7	36
21	Intramuscular cell transplantation as a potential treatment of myopathies: clinical and preclinical relevant data. Expert Opinion on Biological Therapy, 2011, 11, 359-374.	3.1	49
22	A First Semimanual Device for Clinical Intramuscular Repetitive Cell Injections. Cell Transplantation, 2010, 19, 67-78.	2.5	23
23	Preservation of muscle spindles in a 27â€yearâ€old Duchenne muscular dystrophy patient: Importance for regenerative medicine strategies. Muscle and Nerve, 2010, 41, 729-730.	2.2	10
24	Expression of Dog Microdystrophin in Mouse and Dog Muscles by Gene Therapy. Molecular Therapy, 2010, 18, 1002-1009.	8.2	24
25	Intramuscular Transplantation of Human Postnatal Myoblasts Generates Functional Donor-Derived Satellite Cells. Molecular Therapy, 2010, 18, 1689-1697.	8.2	53
26	Growth Factor Coinjection Improves the Migration Potential of Monkey Myogenic Precursors without Affecting Cell Transplantation Success. Cell Transplantation, 2009, 18, 719-730.	2.5	36
27	Autologous Transplantation of Muscle Precursor Cells Modified with a Lentivirus for Muscular Dystrophy: Human Cells and Primate Models. Molecular Therapy, 2007, 15, 431-438.	8.2	93
28	Ischemic Central Necrosis in Pockets of Transplanted Myoblasts in Nonhuman Primates: Implications for Cell-Transplantation Strategies. Transplantation, 2007, 84, 1307-1315.	1.0	45
29	First test of a "high-density injection―protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscular Disorders, 2007, 17, 38-46.	0.6	167
30	Use of Repeating Dispensers to Increase the Efficiency of the Intramuscular Myogenic Cell Injection Procedure. Cell Transplantation, 2006, 15, 659-663.	2.5	45
31	Dystrophin Expression in Muscles of Duchenne Muscular Dystrophy Patients After High-Density Injections of Normal Myogenic Cells. Journal of Neuropathology and Experimental Neurology, 2006, 65, 371-386.	1.7	198
32	Dystrophin Expression in Myofibers of Duchenne Muscular Dystrophy Patients Following Intramuscular Injections of Normal Myogenic Cells. Molecular Therapy, 2004, 9, 475-482.	8.2	166
33	Myoblast transplantation for inherited myopathies: a clinical approach. Expert Opinion on Biological Therapy, 2004, 4, 1871-1885.	3.1	53
34	Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. Journal of Muscle Research and Cell Motility, 2003, 24, 287-302.	2.0	67
35	Efficacy of Myoblast Transplantation in Nonhuman Primates Following Simple Intramuscular Cell Injections: Toward Defining Strategies Applicable to Humans. Experimental Neurology, 2002, 175, 112-126.	4.1	93
36	Myoblast Transplantation in Whole Muscle of Nonhuman Primates. Journal of Neuropathology and Experimental Neurology, 2000, 59, 197-206.	1.7	71

DANIEL SKUK

#	Article	IF	CITATIONS
37	Successful Myoblast Transplantation in Primates Depends on Appropriate Cell Delivery and Induction of Regeneration in the Host Muscle. Experimental Neurology, 1999, 155, 22-30.	4.1	92
38	Transplantation of Human Myoblasts in SCID Mice as a Potential Muscular Model for Myotonic Dystrophy. Journal of Neuropathology and Experimental Neurology, 1999, 58, 921-931.	1.7	23
39	Myoblast transplantation in non-dystrophic dog. Neuromuscular Disorders, 1998, 8, 95-110.	0.6	33
40	Successful Transplantation of Genetically Corrected DMD Myoblasts Followingex VivoTransduction with the Dystrophin Minigene. Biochemical and Biophysical Research Communications, 1998, 247, 94-99.	2.1	35