Navin K Kapur Fscai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Contemporary Management of Cardiogenic Shock: A Scientific Statement From the American Heart Association. Circulation, 2017, 136, e232-e268.	1.6	1,103
2	SCAI clinical expert consensus statement on the classification of cardiogenic shock. Catheterization and Cardiovascular Interventions, 2019, 94, 29-37.	0.7	657
3	2015 SCAI/ACC/HFSA/STS Clinical Expert Consensus Statement on the Use of Percutaneous Mechanical Circulatory Support Devices in Cardiovascular Care. Journal of the American College of Cardiology, 2015, 65, e7-e26.	1.2	491
4	Improved Outcomes Associated with the use of Shock Protocols: Updates from the National Cardiogenic Shock Initiative. Catheterization and Cardiovascular Interventions, 2019, 93, 1173-1183.	0.7	314
5	Mechanical Circulatory Support Devices for Acute Right Ventricular Failure. Circulation, 2017, 136, 314-326.	1.6	219
6	SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies. Journal of the American College of Cardiology, 2022, 79, 933-946.	1.2	214
7	Left Ventricular T-Cell Recruitment Contributes to the Pathogenesis of Heart Failure. Circulation: Heart Failure, 2015, 8, 776-787.	1.6	198
8	Pulmonary Artery Pulsatility Index Is Associated With Right Ventricular Failure After Left Ventricular Assist Device Surgery. Journal of Cardiac Failure, 2016, 22, 110-116.	0.7	197
9	Unloading the Left Ventricle Before Reperfusion in Patients With Anterior ST-Segment–Elevation Myocardial Infarction. Circulation, 2019, 139, 337-346.	1.6	188
10	Complete Hemodynamic Profiling With Pulmonary Artery Catheters in Cardiogenic Shock Is Associated With Lower In-Hospital Mortality. JACC: Heart Failure, 2020, 8, 903-913.	1.9	163
11	The pulmonary artery pulsatility index identifies severe right ventricular dysfunction in acute inferior myocardial infarction. Catheterization and Cardiovascular Interventions, 2012, 80, 593-600.	0.7	155
12	Invasive Hemodynamic Assessment and Classification of In-Hospital Mortality Risk Among Patients With Cardiogenic Shock. Circulation: Heart Failure, 2020, 13, e007099.	1.6	151
13	Mechanically Unloading the Left Ventricle Before Coronary Reperfusion Reduces Left Ventricular Wall Stress and Myocardial Infarct Size. Circulation, 2013, 128, 328-336.	1.6	148
14	Left Ventricular Unloading BeforeÂReperfusion Promotes FunctionalÂRecovery After AcuteÂMyocardialÂInfarction. Journal of the American College of Cardiology, 2018, 72, 501-514.	1.2	138
15	Mechanical Unloading in Heart Failure. Journal of the American College of Cardiology, 2018, 72, 569-580.	1.2	127
16	Value of Hemodynamic Monitoring in Patients With Cardiogenic Shock Undergoing Mechanical Circulatory Support. Circulation, 2020, 141, 1184-1197.	1.6	123
17	Circulatory Support Devices in Cardiovascular Care (Endorsed by the American Heart Association, the) Tj ETQq	1 1 0.7843 0.7	14 rgBT /Ove 108
18	Reduced Endoglin Activity Limits Cardiac Fibrosis and Improves Survival in Heart Failure. Circulation, 2012, 125, 2728-2738.	1.6	97

#	Article	IF	CITATIONS
19	Mechanical Circulatory Support for Right Ventricular Failure. JACC: Heart Failure, 2013, 1, 127-134.	1.9	97
20	Mechanical Pre-Conditioning With AcuteÂCirculatory Support Before Reperfusion Limits Infarct Size in AcuteÂMyocardial Infarction. JACC: Heart Failure, 2015, 3, 873-882.	1.9	97
21	Effects of a percutaneous mechanical circulatory support device for medically refractory right ventricular failure. Journal of Heart and Lung Transplantation, 2011, 30, 1360-1367.	0.3	94
22	Early Right Ventricular Assist Device Use in Patients Undergoing Continuous-Flow Left Ventricular Assist Device Implantation. Circulation: Heart Failure, 2017, 10, .	1.6	89
23	Considerations for cardiac catheterization laboratory procedures during the <scp>COVID</scp> â€19 pandemic perspectives from the Society for Cardiovascular Angiography and Interventions Emerging Leader Mentorship (<scp><i>SCAI ELM</i></scp>) Members and Graduates. Catheterization and Cardiovascular Interventions. 2020. 96. 586-597.	0.7	89
24	Mechanical Left Ventricular Unloading in Patients Undergoing Venoarterial ExtracorporealÂMembrane Oxygenation. Journal of the American College of Cardiology, 2022, 79, 1239-1250.	1.2	81
25	2015 SCAI/ACC/HFSA/STS Clinical ExpertÂConsensus Statement on the Use ofÂPercutaneous Mechanical Circulatory SupportÂDevices in Cardiovascular Care. Journal of the American College of Cardiology, 2015, 65, 2140-2141.	1.2	78
26	Phenotyping Cardiogenic Shock. Journal of the American Heart Association, 2021, 10, e020085.	1.6	74
27	Criteria for Defining Stages of Cardiogenic Shock Severity. Journal of the American College of Cardiology, 2022, 80, 185-198.	1.2	74
28	Acute mechanical circulatory support for cardiogenic shock: the "door to support―time. F1000Research, 2017, 6, 737.	0.8	73
29	Use of a percutaneous temporary circulatory support device as a bridge to decision during acute decompensation of advanced heart failure. Journal of Heart and Lung Transplantation, 2018, 37, 100-106.	0.3	72
30	Right Ventricular Dysfunction in Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Hemodynamic Analysis of the Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock (SHOCK) Trial and Registry. Journal of Cardiac Failure, 2018, 24, 148-156.	0.7	71
31	Acute Biventricular Mechanical Circulatory Support for Cardiogenic Shock. Journal of the American Heart Association, 2017, 6, .	1.6	69
32	A teamâ€based approach to patients in cardiogenic shock. Catheterization and Cardiovascular Interventions, 2016, 88, 424-433.	0.7	67
33	Left Ventricular Unloading Using an Impella CP Improves Coronary Flow and Infarct Zone Perfusion in Ischemic Heart Failure. Journal of the American Heart Association, 2018, 7, .	1.6	65
34	Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure. Circulation, 2018, 138, 513-526.	1.6	63
35	Preoperative Three-Dimensional Echocardiography to Assess Risk of Right Ventricular Failure After Left Ventricular Assist Device Surgery. Journal of Cardiac Failure, 2015, 21, 189-197.	0.7	55
36	Transvalvular Ventricular Unloading Before Reperfusion in AcuteÂMyocardialÂInfarction. Journal of the American College of Cardiology, 2020, 76, 684-699.	1.2	55

#	Article	IF	CITATIONS
37	Hemodynamic Support with Percutaneous Devices in Patients with Heart Failure. Heart Failure Clinics, 2015, 11, 215-230.	1.0	50
38	Effect of Spironolactone on Myocardial Fibrosis and Other Clinical Variables in Patients with Hypertrophic Cardiomyopathy. American Journal of Medicine, 2018, 131, 837-841.	0.6	50
39	Clinical Outcomes Associated With Acute Mechanical Circulatory Support Utilization in Heart Failure Related Cardiogenic Shock. Circulation: Heart Failure, 2021, 14, e007924.	1.6	48
40	Usefulness of Intra-aortic Balloon Pump Counterpulsation. American Journal of Cardiology, 2016, 117, 469-476.	0.7	47
41	Endoglin: a critical mediator of cardiovascular health. Vascular Health and Risk Management, 2013, 9, 195.	1.0	45
42	Heart Failure-Related Cardiogenic Shock: Pathophysiology, Evaluation and Management Considerations. Journal of Cardiac Failure, 2021, 27, 1126-1140.	0.7	45
43	Maximum level of mobility with axillary deployment of the Impella 5.0 is associated with improved survival. International Journal of Artificial Organs, 2018, 41, 236-239.	0.7	44
44	Acute Hemodynamic Effects of Intra-aortic Balloon Counterpulsation Pumps in Advanced Heart Failure. Journal of Cardiac Failure, 2017, 23, 606-614.	0.7	44
45	Endoglin selectively modulates transient receptor potential channel expression in left and right heart failure. Cardiovascular Pathology, 2016, 25, 478-482.	0.7	42
46	Causes and Predictors of 30-Day Readmission in Patients With Acute Myocardial Infarction and Cardiogenic Shock. Circulation: Heart Failure, 2018, 11, e004310.	1.6	42
47	Cardiogenic Shock in the Setting of Acute Myocardial Infarction. Methodist DeBakey Cardiovascular Journal, 2021, 16, 16.	0.5	42
48	Right Heart Catheterization in Cardiogenic Shock Is Associated With Improved Outcomes: Insights From the Nationwide Readmissions Database. Journal of the American Heart Association, 2021, 10, e019843.	1.6	41
49	Transglutaminase 2 in pulmonary and cardiac tissue remodeling in experimental pulmonary hypertension. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L752-L762.	1.3	40
50	Guideline-Based Referral for Septal Reduction Therapy in Obstructive Hypertrophic Cardiomyopathy Is Associated With Excellent Clinical Outcomes. Circulation: Cardiovascular Interventions, 2019, 12, e007673.	1.4	39
51	Impella Versus Extracorporeal Membrane Oxygenation for Acute Myocardial Infarction Cardiogenic Shock. Cardiovascular Revascularization Medicine, 2020, 21, 1465-1471.	0.3	39
52	Invasive Right Ventricular Pressure-Volume Analysis: Basic Principles, Clinical Applications, and Practical Recommendations. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121009101.	1.6	39
53	Usefulness of Soluble Endoglin as a Noninvasive Measure of Left Ventricular Filling Pressure in Heart Failure. American Journal of Cardiology, 2010, 106, 1770-1776.	0.7	38
54	Intraoperative Hemodynamic and Echocardiographic Measurements Associated With Severe Right Ventricular Failure After Left Ventricular Assist Device Implantation. Anesthesia and Analgesia, 2019, 128, 25-32.	1.1	38

#	Article	IF	CITATIONS
55	Increased Plasmaâ€Free Hemoglobin Levels Identify Hemolysis in Patients With Cardiogenic Shock and a Trans valvular Microâ€Axial Flow Pump. Artificial Organs, 2019, 43, 125-131.	1.0	38
56	Conceptual Considerations for Device-Based Therapy in Acute Decompensated Heart Failure. Circulation: Heart Failure, 2020, 13, e006731.	1.6	37
57	Hemodynamic effects of standard versus larger-capacity intraaortic balloon counterpulsation pumps. Journal of Invasive Cardiology, 2015, 27, 182-8.	0.4	35
58	Venous Tone and Stressed Blood Volume in HeartÂFailure. Journal of the American College of Cardiology, 2022, 79, 1858-1869.	1.2	35
59	Hemodynamic Effects of Left Atrial or Left Ventricular Cannulation for Acute Circulatory Support in a Bovine Model of Left Heart Injury. ASAIO Journal, 2015, 61, 301-306.	0.9	34
60	Trends in utilization of mechanical circulatory support in patients hospitalized after out-of-hospital cardiac arrest. Resuscitation, 2018, 127, 105-113.	1.3	34
61	Right Ventricular Dysfunction Is Common and Identifies Patients at Risk of Dying in Cardiogenic Shock. Journal of Cardiac Failure, 2021, 27, 1061-1072.	0.7	34
62	Preoperative Determinants of Quality of Life and Functional Capacity Response to Left Ventricular Assist Device Therapy. Journal of Cardiac Failure, 2016, 22, 797-805.	0.7	33
63	SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheterization and Cardiovascular Interventions, 2017, 89, E233-E247.	0.7	32
64	Trends in the Incidence of In-Hospital Mortality, Cardiogenic Shock, and Utilization of Mechanical Circulatory Support Devices in Myocarditis (Analysis of National Inpatient Sample Data, 2005–2014). Journal of Cardiac Failure, 2019, 25, 457-467.	0.7	32
65	Vasopressors independently associated with mortality in acute myocardial infarction and cardiogenic shock. Catheterization and Cardiovascular Interventions, 2022, 99, 650-657.	0.7	32
66	Left Ventricular Unloading Increases the Coronary Collateral Flow Index Before Reperfusion and Reduces Infarct Size in a Swine Model of Acute Myocardial Infarction. Journal of the American Heart Association, 2019, 8, e013586.	1.6	31
67	Incidence and clinical outcomes of bleeding complications and acute limb ischemia in STEMI and cardiogenic shock. Catheterization and Cardiovascular Interventions, 2021, 97, 1129-1138.	0.7	31
68	First Successful Use of 2 Axial Flow Catheters for Percutaneous Biventricular Circulatory Support as a Bridge to a Durable Left Ventricular Assist Device. Circulation: Heart Failure, 2015, 8, 1006-1008.	1.6	29
69	Optimising clinical trials in acute myocardial infarction complicated by cardiogenic shock: a statement from the 2020 Critical Care Clinical Trialists Workshop. Lancet Respiratory Medicine,the, 2021, 9, 1192-1202.	5.2	28
70	Timing, timing, timing: the emerging concept of the â€~door to support' time for cardiogenic shock. European Heart Journal, 2017, 38, 3532-3534.	1.0	27
71	Clinical and regulatory landscape for cardiogenic shock: A report from the Cardiac Safety Research Consortium ThinkTank on cardiogenic shock. American Heart Journal, 2020, 219, 1-8.	1.2	27
72	Lactate Clearance Is Associated With Improved Survival in Cardiogenic Shock: A Systematic Review and Meta-Analysis of Prognostic Factor Studies. Journal of Cardiac Failure, 2021, 27, 1082-1089.	0.7	26

#	Article	IF	CITATIONS
73	Percutaneous biâ€atrial extracorporeal membrane oxygenation for acute circulatory support in advanced heart failure. Catheterization and Cardiovascular Interventions, 2015, 85, 1097-1099. 2015 SCAI/ACC/HFSA/STS clinical expert consensus statement on the use of percutaneous mechanical	0.7	25
74	circulatory support devices in cardiovascular care (Endorsed by the American heart assocation, the) Tj ETQqO O	0 rgBT /Ov 0.7	verlock 10 Tf 5 25
75	E175-96. The science of safety: complications associated with the use of mechanical circulatory support in cardiogenic shock and best practices to maximize safety. F1000Research, 2020, 9, 794.	0.8	25
76	Mixed lineage kinase-3 prevents cardiac dysfunction and structural remodeling with pressure overload. American Journal of Physiology - Heart and Circulatory Physiology, 2019, 316, H145-H159.	1.5	24
77	Right Axillary Artery Conduit Is a Safe and Reliable Access for Implantation of Impella 5.0 Microaxial Pump. Annals of Vascular Surgery, 2019, 54, 54-59.	0.4	24
78	Improved outcomes in patients with severely depressed LVEF undergoing percutaneous coronary intervention with contemporary practices. American Heart Journal, 2022, 248, 139-149.	1.2	24
79	Percutaneous Mechanical Circulatory Support for Cardiogenic Shock. Current Treatment Options in Cardiovascular Medicine, 2016, 18, 6.	0.4	23
80	Percutaneous mechanical circulatory support: current concepts and future directions. Heart, 2016, 102, 1494-1507.	1.2	22
81	Glycolysis regulated transglutaminase 2 activation in cardiopulmonary fibrogenic remodeling. FASEB Journal, 2020, 34, 930-944.	0.2	22
82	Bridging With Extracorporeal Membrane Oxygenation Under the New Heart Allocation System: A United Network for Organ Sharing Database Analysis. Circulation: Heart Failure, 2021, 14, e007966.	1.6	22
83	Invasive Hemodynamic Monitoring in Cardiogenic Shock Is Associated With Lower Inâ€Hospital Mortality. Journal of the American Heart Association, 2021, 10, e021808.	1.6	22
84	Biventricular Remodeling in Murine Models of Right Ventricular Pressure Overload. PLoS ONE, 2013, 8, e70802.	1.1	22
85	Circulating multimarker profile of patients with symptomatic heart failure supports enhanced fibrotic degradation and decreased angiogenesis. Biomarkers, 2016, 21, 91-97.	0.9	21
86	Variability in reporting of key outcome predictors in acute myocardial infarction cardiogenic shock trials. Catheterization and Cardiovascular Interventions, 2022, 99, 19-26.	0.7	21
87	Defining the Role for Percutaneous Mechanical Circulatory Support Devices for Medically Refractory Heart Failure. Current Heart Failure Reports, 2013, 10, 177-184.	1.3	20
88	Biventricular Circulatory Support Using 2 Axial Flow Catheters for Cardiogenic Shock Without the Need for Surgical Vascular Access. Circulation: Cardiovascular Interventions, 2016, 9, .	1.4	20
89	Conditional knockout of activin like kinase-1 (ALK-1) leads to heart failure without maladaptive remodeling. Heart and Vessels, 2017, 32, 628-636.	0.5	19
90	The Impella Microaxial Flow Catheter Is Safe and Effective for Treatment of Myocarditis Complicated by Cardiogenic Shock: An Analysis From the Global cVAD Registry. Journal of Cardiac Failure, 2018, 24, 706-710.	0.7	19

#	Article	IF	CITATIONS
91	Protecting the Vulnerable Left Ventricle. Circulation: Heart Failure, 2019, 12, e006581.	1.6	19
92	Elevated Soluble fms-Like Tyrosine Kinase-1 Levels in Acute Coronary Occlusion. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 443-450.	1.1	17
93	Mechanical Left Ventricular Unloading to Reduce Infarct Size During Acute Myocardial Infarction: Insight from Preclinical and Clinical Studies. Journal of Cardiovascular Translational Research, 2019, 12, 87-94.	1.1	17
94	Percutaneous Axillary Access for Placement of Microaxial Ventricular Support Devices. Circulation: Cardiovascular Interventions, 2021, 14, e009657.	1.4	17
95	Device profile of the Impella 5.0 and 5.5 system for mechanical circulatory support for patients with cardiogenic shock: overview of its safety and efficacy. Expert Review of Medical Devices, 2022, 19, 1-10.	1.4	17
96	Percutaneous left ventricular support in cardiogenic shock and severe aortic regurgitation. Catheterization and Cardiovascular Interventions, 2013, 81, 399-401.	0.7	16
97	Reduced activin receptor-like kinase 1 activity promotes cardiac fibrosis in heart failure. Cardiovascular Pathology, 2017, 31, 26-33.	0.7	16
98	Abdominal Positioning of the Next-Generation Intra-Aortic Fluid Entrainment Pump (Aortix) Improves Cardiac Output in a Swine Model of Heart Failure. Circulation: Heart Failure, 2018, 11, e005115.	1.6	16
99	Firstâ€inâ€human experience with occlusion of the superior vena cava to reduce cardiac filling pressures in congestive heart failure. Catheterization and Cardiovascular Interventions, 2019, 93, 1205-1210.	0.7	16
100	Deployment of acute mechanical circulatory support devices via the axillary artery. Expert Review of Cardiovascular Therapy, 2019, 17, 353-360.	0.6	16
101	Distinct Effects of Unfractionated Heparin versus Bivalirudin on Circulating Angiogenic Peptides. PLoS ONE, 2012, 7, e34344.	1.1	16
102	Intermittent Occlusion of the Superior Vena Cava to Improve Hemodynamics in Patients With Acutely Decompensated Heart Failure: The VENUS-HF Early Feasibility Study. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121008934.	1.6	16
103	The role of acute circulatory support in ST-segment elevation myocardial infarction complicated by cardiogenic shock. Indian Heart Journal, 2017, 69, 668-674.	0.2	15
104	Integrating Interventional Cardiology and Heart Failure Management for Cardiogenic Shock. Interventional Cardiology Clinics, 2017, 6, 481-485.	0.2	15
105	Veno-arterial extracorporeal membrane oxygenation (VA-ECMO) fails to solve the haemodynamic support equation in cardiogenic shock. EuroIntervention, 2016, 11, 1337-1339.	1.4	15
106	Lactate Clearance as a Surrogate for Mortality in Cardiogenic Shock: Insights From the DOREMI Trial. Journal of the American Heart Association, 2022, 11, e023322.	1.6	15
107	Outcomes After Continuous-Flow Left Ventricular Assist Device Implantation as Destination Therapy at Transplant Versus Nontransplant Centers. Circulation: Heart Failure, 2018, 11, e004384.	1.6	14
108	Prevalence and Clinical Correlates of Extended Mechanical Support in Patients Undergoing High-Risk Percutaneous Coronary Intervention in Current Clinical Practice: Insights from the cVAD Registry. Cardiovascular Revascularization Medicine, 2020, 21, 342-347.	0.3	14

#	Article	IF	CITATIONS
109	Cardiac safety research consortium "shock II―think tank report: Advancing practical approaches to generating evidence for the treatment of cardiogenic shock. American Heart Journal, 2020, 230, 93-97.	1.2	14
110	Incidence and clinical outcomes of stroke in ST $\hat{a} \in e$ levation myocardial infarction and cardiogenic shock. Catheterization and Cardiovascular Interventions, 2021, 97, 217-225.	0.7	14
111	Impact of Age on Outcomes in Patients With Cardiogenic Shock. Frontiers in Cardiovascular Medicine, 2021, 8, 688098.	1.1	14
112	Stenting of an outflow graft obstruction after implantation of a continuous-flow, axial-flow left ventricular assist device. Journal of Thoracic and Cardiovascular Surgery, 2015, 150, e11-e12.	0.4	13
113	Hybrid Training in Acute Cardiovascular Care. Circulation: Cardiovascular Quality and Outcomes, 2020, 13, e006507.	0.9	13
114	Left Ventricular Unloading Before Percutaneous Coronary Intervention is Associated With Improved Survival in Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Systematic Review and Meta-Analysis. Cardiovascular Revascularization Medicine, 2022, 39, 28-35.	0.3	13
115	Intermittent Occlusion of the Superior Vena Cava Reduces Cardiac Filling Pressures in Preclinical Models of Heart Failure. Journal of Cardiovascular Translational Research, 2020, 13, 151-157.	1.1	12
116	Estimation of Stressed Blood Volume in Patients With Cardiogenic Shock From Acute Myocardial Infarction and Decompensated Heart Failure. Journal of Cardiac Failure, 2021, 27, 1141-1145.	0.7	12
117	Microaxial Left Ventricular Assist Device Versus Intraaortic Balloon Pump as a Bridge to Transplant. Annals of Thoracic Surgery, 2022, 114, 160-166.	0.7	12
118	Epidemiology and management of right ventricular-predominant heart failure and shock in the cardiac intensive care unit. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 584-594.	0.4	12
119	The interventional heart failure initiative: A mission statement for the next generation of invasive cardiologists. Catheterization and Cardiovascular Interventions, 2015, 86, 353-355.	0.7	11
120	Door to Unload: a New Paradigm for the Management of Cardiogenic Shock. Current Cardiovascular Risk Reports, 2016, 10, 1.	0.8	11
121	Executive Summary of the SCAI/HFSA Clinical Expert Consensus Document on the Use of Invasive Hemodynamics for the Diagnosis and Management of Cardiovascular Disease. Journal of Cardiac Failure, 2017, 23, 487-491.	0.7	11
122	Post-Closure Technique to Reduce Vascular Complications Related to Impella CP. Cardiovascular Revascularization Medicine, 2022, 39, 38-42.	0.3	11
123	Strategies to reduce limb ischemia in peripheral venoarterial extracorporeal membrane oxygenation: A systematic review and Meta-analysis. International Journal of Cardiology, 2022, 361, 77-84. 2015 <scp>SCAI</scp> / <scp>ACC</scp> / <scp>HFSA</scp> / <scp>STS</scp> clinical expert consensus	0.8	11
124	statement on the use of percutaneous mechanical circulatory support devices in Cardiovascular Care (Endorsed by the American heart association, the Cardiological society of India, and Sociedad Latino) Tj ETQq0	ට 0 දැදුBT /C	Dverlock 10 Tf
125	and Cardiovascular Interventions, 2015, 85, 1112-1114. Advances in Vascular Post-Closure With Impella. Cardiovascular Revascularization Medicine, 2019, 20, 94-95.	0.3	10
126	Central Venous Pressure and Clinical Outcomes During Left-Sided Mechanical Support for Acute	1.1	10

Myocardial Infarction and Cardiogenic Shock. Frontiers in Cardiovascular Medicine, 2020, 7, 155. 126

#	Article	IF	CITATIONS
127	One-Year Outcomes Following Heart Transplantation Under the New Donor Heart Allocation System in the United States. Circulation: Heart Failure, 2021, 14, e007754.	1.6	10
128	Acute myocardial infarction and cardiogenic shock: Should we unload the ventricle before percutaneous coronary intervention?. Progress in Cardiovascular Diseases, 2020, 63, 607-622.	1.6	9
129	Door-to-unload: left ventricular unloading before reperfusion in ST-elevation myocardial infarction. Future Cardiology, 2021, 17, 549-559.	0.5	9
130	Impella Mechanical Circulatory Support for Takotsubo Syndrome With Shock: A Retrospective Multicenter Analysis. Cardiovascular Revascularization Medicine, 2022, 40, 113-119.	0.3	9
131	Intra-aortic balloon pump for acute-on-chronic heart failure complicated by cardiogenic shock. Journal of Cardiac Failure, 2021, , .	0.7	9
132	Integrating palliative care into the modern cardiac intensive care unit: a review. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 442-449.	0.4	9
133	A new shield from the double-edged sword of reperfusion in STEMI. European Heart Journal, 2015, 36, 3058-3060.	1.0	8
134	Outcomes Among Patients Transferred for Revascularization With Impella for Acute Myocardial Infarction With Cardiogenic Shock from the cVAD Registry. American Journal of Cardiology, 2019, 123, 1214-1219.	0.7	8
135	Clinical trials of acute mechanical circulatory support in cardiogenic shock and high-risk percutaneous coronary intervention. Current Opinion in Cardiology, 2020, 35, 332-340.	0.8	8
136	SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies. , 2022, 1, 100008.		8
137	Ventricular Square-Wave Response. Circulation: Heart Failure, 2015, 8, 652-654.	1.6	7
138	The SCAI Cardiogenic Shock Staging System Gets Taken for a Test Drive. Journal of the American College of Cardiology, 2019, 74, 2129-2131.	1.2	7
139	Systemic Inflammatory Burden Correlates with Severity and Predicts Outcomes in Patients with Cardiogenic Shock Supported by a Percutaneous Mechanical Assist Device. Journal of Cardiovascular Translational Research, 2021, 14, 476-483.	1.1	7
140	Acute Effects of Left Ventricular Support With Impella 5.5 on Biventricular Hemodynamics. Circulation: Heart Failure, 2021, 14, e008616.	1.6	7
141	From bedside to bench and back again: translational studies of mechanical unloading of the left ventricle to promote recovery after acute myocardial infarction. F1000Research, 2018, 7, 1852.	0.8	7
142	Nursing Management of Patients Requiring Acute Mechanical Circulatory Support Devices. Critical Care Nurse, 2020, 40, e1-e11.	0.5	7
143	Percutaneous Circulatory Assist Devices for Right Ventricular Failure. Interventional Cardiology Clinics, 2013, 2, 445-456.	0.2	6
144	Left Ventricular Assist Devices for Acute Myocardial Infarct Size Reduction: Meta-analysis. Journal of Cardiovascular Translational Research, 2021, 14, 467-475.	1.1	6

#	Article	IF	CITATIONS
145	Outcomes of bailout percutaneous ventricular assist device versus prophylactic strategy in patients undergoing nonemergent percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2021, 98, E501-E512.	0.7	6
146	To Vent or Not to Vent: A Loaded Question During Venoarterial Extracorporeal Membrane Oxygenation Support for Cardiogenic Shock. Circulation: Cardiovascular Interventions, 2021, 14, e010537.	1.4	5
147	Left ventricular assist device thrombosis presenting as an acute coronary syndrome. Journal of Thoracic and Cardiovascular Surgery, 2014, 147, e72-e73.	0.4	4
148	Executive summary of the SCAI/HFSA clinical expert consensus document on the use of invasive hemodynamics for the diagnosis and management of cardiovascular disease. Catheterization and Cardiovascular Interventions, 2017, 89, 1294-1299.	0.7	4
149	Contrast induced nephropathy after coronary or vascular intervention: More biomarkers than answers. Catheterization and Cardiovascular Interventions, 2018, 91, 1192-1193.	0.7	4
150	Enhanced potency of prasugrel on protease-activated receptors following bivalirudin treatment for PCI as compared to clopidogrel. Thrombosis Research, 2019, 177, 59-69.	0.8	4
151	Clinical features and outcomes in patients with cardiogenic shock complicating acute myocardial infarction: early vs recent experience with impella. American Heart Journal, 2021, 238, 66-74.	1.2	4
152	Successful use of Impella 5.5 to manage cardiogenic shock complicated by COVIDâ€19. Journal of Cardiac Surgery, 2021, 36, 4783-4785.	0.3	4
153	Counterpulsation requires pulsation: IABP use in patients with heart failure without acute MI. Catheterization and Cardiovascular Interventions, 2018, 92, 711-712.	0.7	3
154	Abrupt Development of a Trans-Aortic Valve Gradient in the Setting of Acute Left-Sided Circulatory Support Identifies Right Heart Failure in Cardiogenic Shock: The Kapur-Langston Sign. Cardiovascular Revascularization Medicine, 2020, 21, 77-79.	0.3	3
155	Single stick access using a VAâ€ECMO arterial return cannula for coronary intervention in cardiogenic shock. Catheterization and Cardiovascular Interventions, 2021, 97, E673-E675.	0.7	3
156	Protect right: right ventricular failure prevention strategy for left ventricular assist device implantation. European Journal of Cardio-thoracic Surgery, 2021, 59, 1128-1130.	0.6	3
157	Right Atrial Pressure Is Associated With Outcomes in Patient With Cardiogenic Shock Receiving Acute Mechanical Circulatory Support. Frontiers in Cardiovascular Medicine, 2021, 8, 563853.	1.1	3
158	The Rise of Endovascular Mechanical Circulatory Support Use for Cardiogenic Shock and High Risk Coronary Intervention: Considerations and Challenges. Expert Review of Cardiovascular Therapy, 2021, 19, 151-164.	0.6	3
159	Successful management of an unruptured mycotic coronary aneurysm. Journal of Invasive Cardiology, 2007, 19, E366-8.	0.4	3
160	Mechanical Circulatory Support in COVID-19. Cardiology Clinics, 2022, , .	0.9	3
161	A Clinical Commentary on the Articles "Strategies for Tissue Engineering Cardiac Constructs to Affect Functional Repair Following Myocardial Infarction―and "Stem Cell-Based Cardiac Tissue Engineering― Journal of Cardiovascular Translational Research, 2011, 4, 603-604.	1.1	2
162	Investing in our future: Update on the SCAI Emerging Leader Mentorship (ELM) Program. Catheterization and Cardiovascular Interventions, 2016, 88, 674-677.	0.7	2

#	Article	IF	CITATIONS
163	A quality framework for the role of invasive, nonâ€interventional cardiologists in the presentâ€day cardiac catheterization laboratory: A multidisciplinary SCAI/HFSA expert consensus statement. Catheterization and Cardiovascular Interventions, 2018, 92, 1356-1364.	0.7	2
164	Left ventricular endâ€diastolic pressure in acute myocardial infarction: A loaded target in need of unloading. Catheterization and Cardiovascular Interventions, 2019, 93, 910-911.	0.7	2
165	Heartech: Another parachute looking for a landing zone in interventions for heart failure. Catheterization and Cardiovascular Interventions, 2019, 94, 854-855.	0.7	2
166	A manifesto of collaborative longitudinal cardiovascular care in heart failure. Heart Failure Reviews, 2020, 25, 1089-1097.	1.7	2
167	Transaxillary Intra-Aortic Balloon Pump Deployment Through a Novel Braided Sheath for Advanced Heart Failure Patients Requiring an Extended Duration of Temporary Circulatory Support. Cardiovascular Revascularization Medicine, 2020, 21, 112-115.	0.3	2
168	Percutaneous Management of Outflow Graft Obstruction in Patients With Continuous Flow Left Ventricular Assist Devices. JACC: Case Reports, 2020, 2, 400-405.	0.3	2
169	Myocardial Injury Promotes Matrix Metalloproteinase-9 Activity in the Renal Cortex in Preclinical Models of Acute Myocardial Infarction. Journal of Cardiovascular Translational Research, 2021, , 1.	1.1	2
170	The Effects of Percutaneous Left Ventricular Assist Device Placement on Native Valve Competency. ASAIO Journal, 2021, Publish Ahead of Print, .	0.9	2
171	Transcatheter Mitral Intervention Relieves Dynamic Outflow Obstruction and Reduces Cardiac Workload in Hypertrophic Cardiomyopathy. Circulation: Heart Failure, 2022, 15, CIRCHEARTFAILURE121009171.	1.6	2
172	A Comprehensive Appraisal of Risk Prediction Models for Cardiogenic Shock. Shock, 2022, 57, 617-629.	1.0	2
173	Distal Embolic Protection in Impella 5.0 Explantation: Loop and Snare Technique. Annals of Thoracic Surgery, 2020, 109, e145-e146.	0.7	1
174	RESPONSE: Hybrid Training for Interventional, Heart Failure, and Critical Care Medicine. Journal of the American College of Cardiology, 2020, 75, 2987-2988.	1.2	1
175	Aortixâ"¢: a novel intra-aortic entrainment pump. Future Cardiology, 2021, 17, 283-291.	0.5	1
176	Left Atrial Unloading in the Setting of Mitral Stenosis and Left Atrial Appendage Thrombus. Circulation: Heart Failure, 2022, 15, e008561.	1.6	1
177	High-risk coronary intervention with a percutaneous ventricular assist device in the presence of an unstable left ventricular thrombus. Journal of Invasive Cardiology, 2010, 22, E138-40.	0.4	1
178	Quantitative assessment of myocardial perfusion using time-density curve analysis after elective percutaneous coronary intervention. Journal of Invasive Cardiology, 2014, 26, 60-3.	0.4	1
179	Outcomes in cardiogenic shock: the role of surrogate endpoints. Current Opinion in Critical Care, 0, Publish Ahead of Print, .	1.6	1
180	The Challenge of Defining Best Practice Treatment for Takotsubo Syndrome With Shock. Cardiovascular Revascularization Medicine, 2022, 42, 183-185.	0.3	1

#	Article	IF	CITATIONS
181	Rise of the machines… and their mechanics. Catheterization and Cardiovascular Interventions, 2011, 78, 962-963.	0.7	0
182	Cardiac Allograft Vasculopathy: Vulnerable Patients, Not Vulnerable Plaques. Catheterization and Cardiovascular Interventions, 2013, 81, 436-437.	0.7	0
183	Interventions for failing vessels, valves, and now … ventricles: The Parachute device. Catheterization and Cardiovascular Interventions, 2014, 83, 631-632.	0.7	Ο
184	Small Acute Mechanical Circulatory Support Pumps for Small People. Catheterization and Cardiovascular Interventions, 2016, 88, 590-591.	0.7	0
185	Transaxillary Impella support: Bridging the gap of powerful left ventricular support. Artificial Organs, 2019, 43, 1053-1054.	1.0	О
186	Univentricular Right Heart Support Using a Single Axial Flow Catheter for High Risk Multivessel Percutaneous Coronary Intervention. Cardiovascular Revascularization Medicine, 2019, 20, 28-30.	0.3	0
187	New Mechanistic Insight and Approaches for the Field of Acute Mechanical Circulatory Support. Journal of Cardiovascular Translational Research, 2019, 12, 85-86.	1.1	О
188	Revascularization in Cardiogenic Shock and Advanced Heart Failure. Current Treatment Options in Cardiovascular Medicine, 2019, 21, 4.	0.4	0
189	Uncommon Cause of Hemolysis With Rapid Decrease in Mechanical Circulatory Support Flow. Circulation: Heart Failure, 2021, 14, e007312.	1.6	Ο
190	Editorial: Science in Mechanical Circulatory Support. Frontiers in Cardiovascular Medicine, 2021, 8, 676595.	1.1	0
191	Devices for ventricular reconstruction in heart failure due to infarct cardiomyopathy. Journal of Cardiac Failure, 2022, , .	0.7	Ο
192	REDUCE LAP-HF II interatrial shunt trial: neutral, but necessary. Lancet, The, 2022, , .	6.3	0
193	Circulatory support devices in the catheterization laboratory: evolution or revolution?. Journal of Invasive Cardiology, 2013, 25, 62-3.	0.4	0
194	A New Dawn for Transvalvular Pumps for Ventricular Unloading as a Bridge to Heart Transplantation. ASAIO Journal, 2022, 68, 760-762.	0.9	0