David M Barrett

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368443/publications.pdf

Version: 2024-02-01

73 papers

13,691 citations

35 h-index 106344 65 g-index

74 all docs

74 docs citations

74 times ranked 13484 citing authors

#	Article	IF	CITATIONS
1	Chimeric Antigen Receptor T Cells for Sustained Remissions in Leukemia. New England Journal of Medicine, 2014, 371, 1507-1517.	27.0	4,444
2	Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. New England Journal of Medicine, 2013, 368, 1509-1518.	27.0	3,021
3	Convergence of Acquired Mutations and Alternative Splicing of <i>CD19</i> Enables Resistance to CART-19 Immunotherapy. Cancer Discovery, 2015, 5, 1282-1295.	9.4	997
4	Identification of Predictive Biomarkers for Cytokine Release Syndrome after Chimeric Antigen Receptor T-cell Therapy for Acute Lymphoblastic Leukemia. Cancer Discovery, 2016, 6, 664-679.	9.4	811
5	Induction of resistance to chimeric antigen receptor T cell therapy by transduction of a single leukemic B cell. Nature Medicine, 2018, 24, 1499-1503.	30.7	459
6	Ibrutinib enhances chimeric antigen receptor T-cell engraftment and efficacy in leukemia. Blood, 2016, 127, 1117-1127.	1.4	381
7	Chimeric Antigen Receptor Therapy for Cancer. Annual Review of Medicine, 2014, 65, 333-347.	12.2	319
8	Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies. Science Translational Medicine, 2016, 8, 320ra3.	12.4	224
9	Tocilizumab for the treatment of chimeric antigen receptor T cell-induced cytokine release syndrome. Expert Review of Clinical Immunology, 2019, 15, 813-822.	3.0	221
10	Treatment of Advanced Leukemia in Mice with mRNA Engineered T Cells. Human Gene Therapy, 2011, 22, 1575-1586.	2.7	191
11	Reducing <i>Ex Vivo</i> Culture Improves the Antileukemic Activity of Chimeric Antigen Receptor (CAR) T Cells. Cancer Immunology Research, 2018, 6, 1100-1109.	3.4	189
12	Preclinical efficacy of daratumumab in T-cell acute lymphoblastic leukemia. Blood, 2018, 131, 995-999.	1.4	170
13	Chimeric Antigen Receptor– and TCR-Modified T Cells Enter Main Street and Wall Street. Journal of Immunology, 2015, 195, 755-761.	0.8	147
14	Toxicity management for patients receiving novel T-cell engaging therapies. Current Opinion in Pediatrics, 2014, 26, 43-49.	2.0	130
15	Monocyte lineage–derived IL-6 does not affect chimeric antigen receptor T-cell function. Cytotherapy, 2017, 19, 867-880.	0.7	116
16	Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood, 2015, 126, 629-639.	1.4	110
17	Risk-Adapted Preemptive Tocilizumab to Prevent Severe Cytokine Release Syndrome After CTL019 for Pediatric B-Cell Acute Lymphoblastic Leukemia: A Prospective Clinical Trial. Journal of Clinical Oncology, 2021, 39, 920-930.	1.6	110
18	Regimen-Specific Effects of RNA-Modified Chimeric Antigen Receptor T Cells in Mice with Advanced Leukemia. Human Gene Therapy, 2013, 24, 717-727.	2.7	97

#	Article	IF	CITATIONS
19	Humanized CD19-Targeted Chimeric Antigen Receptor (CAR) T Cells in CAR-Naive and CAR-Exposed Children and Young Adults With Relapsed or Refractory Acute Lymphoblastic Leukemia. Journal of Clinical Oncology, 2021, 39, 3044-3055.	1.6	94
20	Relation of clinical culture method to T-cell memory status and efficacy in xenograft models of adoptive immunotherapy. Cytotherapy, 2014, 16, 619-630.	0.7	90
21	Antigen-independent activation enhances the efficacy of 4-1BB-costimulated CD22 CAR T cells. Nature Medicine, 2021, 27, 842-850.	30.7	88
22	Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy. Cancer Discovery, 2021, 11, 2186-2199.	9.4	85
23	Neurotoxicity after CTL019 in a pediatric and young adult cohort. Annals of Neurology, 2018, 84, 537-546.	5.3	82
24	Purification of mRNA Encoding Chimeric Antigen Receptor Is Critical for Generation of a Robust T-Cell Response. Human Gene Therapy, 2019, 30, 168-178.	2.7	81
25	Current status of chimeric antigen receptor therapy for haematological malignancies. British Journal of Haematology, 2016, 172, 11-22.	2.5	70
26	The Emerging Role of InÂVitro-Transcribed mRNA in Adoptive T Cell Immunotherapy. Molecular Therapy, 2019, 27, 747-756.	8.2	66
27	Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Science Advances, 2022, 8, .	10.3	63
28	Nature of Tumor Control by Permanently and Transiently Modified GD2 Chimeric Antigen Receptor T Cells in Xenograft Models of Neuroblastoma. Cancer Immunology Research, 2014, 2, 1059-1070.	3.4	62
29	Retention of CD19 intron 2 contributes to CART-19 resistance in leukemias with subclonal frameshift mutations in CD19. Leukemia, 2020, 34, 1202-1207.	7.2	61
30	The Pediatric Cell Atlas: Defining the Growth Phase of Human Development at Single-Cell Resolution. Developmental Cell, 2019, 49, 10-29.	7.0	57
31	CD19 Alterations Emerging after CD19-Directed Immunotherapy Cause Retention of the Misfolded Protein in the Endoplasmic Reticulum. Molecular and Cellular Biology, 2018, 38, .	2.3	55
32	Cellular therapy: Immuneâ€related complications. Immunological Reviews, 2019, 290, 114-126.	6.0	55
33	Autologous and Allogeneic Cellular Therapies for High-risk Pediatric Solid Tumors. Pediatric Clinics of North America, 2010, 57, 47-66.	1.8	54
34	Noninvasive bioluminescent imaging of primary patient acute lymphoblastic leukemia: a strategy for preclinical modeling. Blood, 2011, 118, e112-e117.	1.4	49
35	Efficient Trafficking of Chimeric Antigen Receptor (CAR)-Modified T Cells to CSF and Induction of Durable CNS Remissions in Children with CNS/Combined Relapsed/Refractory ALL. Blood, 2015, 126, 3769-3769.	1.4	40
36	T cells targeting NY-ESO-1 demonstrate efficacy against disseminated neuroblastoma. Oncolmmunology, 2016, 5, e1040216.	4.6	37

#	Article	IF	CITATIONS
37	Targeting the PI3K/AKT/mTOR Signaling Axis in Children with Hematologic Malignancies. Paediatric Drugs, 2012, 14, 299-316.	3.1	31
38	Single-cell multiomics dissection of basal and antigen-specific activation states of CD19-targeted CAR T cells. , 2021, 9, e002328.		31
39	Diagnostic biomarkers to differentiate sepsis from cytokine release syndrome in critically ill children. Blood Advances, 2020, 4, 5174-5183.	5.2	30
40	A cellular antidote to specifically deplete anti-CD19 chimeric antigen receptor–positive cells. Blood, 2020, 135, 505-509.	1.4	25
41	Interleukin 6 Is Not Made By Chimeric Antigen Receptor T Cells and Does Not Impact Their Function. Blood, 2016, 128, 654-654.	1.4	23
42	Efficacy and Safety of Humanized Chimeric Antigen Receptor (CAR)-Modified T Cells Targeting CD19 in Children with Relapsed/Refractory ALL. Blood, 2015, 126, 683-683.	1.4	22
43	Dissecting the Tumor–Immune Landscape in Chimeric Antigen Receptor T-cell Therapy: Key Challenges and Opportunities for a Systems Immunology Approach. Clinical Cancer Research, 2020, 26, 3505-3513.	7.0	18
44	T Cells Engineered With a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Produce Significant In Vivo Proliferation, Complete Responses and Long-Term Persistence Without Gvhd In Children and Adults With Relapsed, Refractory ALL. Blood, 2013, 122, 67-67.	1.4	17
45	Comprehensive Serum Proteome Profiling of Cytokine Release Syndrome and Immune Effector Cell–Associated Neurotoxicity Syndrome Patients with B-Cell ALL Receiving CAR T19. Clinical Cancer Research, 2022, 28, 3804-3813.	7.0	17
46	Cars in Leukemia: Relapse with Antigen-Negative Leukemia Originating from a Single B Cell Expressing the Leukemia-Targeting CAR. Blood, 2016, 128, 281-281.	1.4	16
47	Identification and Validation of Predictive Biomarkers to CD19- and BCMA-Specific CAR T-Cell Responses in CAR T-Cell Precursors. Blood, 2019, 134, 622-622.	1.4	15
48	T Cells Engineered with a Chimeric Antigen Receptor (CAR) Targeting CD19 (CTL019) Have Long Term Persistence and Induce Durable Remissions in Children with Relapsed, Refractory ALL. Blood, 2014, 124, 380-380.	1.4	14
49	Roadblocks to success for RNA CARs in solid tumors. Oncolmmunology, 2014, 3, e962974.	4.6	13
50	CRISPR-Cas9 Knock out of CD5 Enhances the Anti-Tumor Activity of Chimeric Antigen Receptor T Cells. Blood, 2020, 136, 51-52.	1.4	13
51	Human Adenovirus 7-Associated Hemophagocytic Lymphohistiocytosis-like Illness: Clinical and Virological Characteristics in a Cluster of Five Pediatric Cases. Clinical Infectious Diseases, 2021, 73, e1532-e1538.	5.8	12
52	Combined use of emapalumab and ruxolitinib in a patient with refractory hemophagocytic lymphohistiocytosis was safe and effective. Pediatric Blood and Cancer, 2021, 68, e29026.	1.5	11
53	Single Chain Variable Fragment Linker Length Regulates CAR Biology and T Cell Efficacy. Blood, 2019, 134, 247-247.	1.4	11
54	Combination of Anti-CD123 and Anti-CD19 Chimeric Antigen Receptor T Cells for the Treatment and Prevention of Antigen-Loss Relapses Occurring after CD19-Targeted Immunotherapies. Blood, 2015, 126, 2523-2523.	1.4	7

#	Article	lF	Citations
55	Repurposing Bi-Specific Chimeric Antigen Receptor (CAR) Approach to Enhance CAR T Cell Activity Against Low Antigen Density Tumors. Blood, 2021, 138, 1727-1727.	1.4	7
56	CD19-Redirected Chimeric Antigen Receptor T (CART19) Cells Induce a Cytokine Release Syndrome (CRS) and Induction of Treatable Macrophage Activation Syndrome (MAS) That Can Be Managed by the IL-6 Antagonist Tocilizumab (toc) Blood, 2012, 120, 2604-2604.	1.4	6
57	Biomarkers Accurately Predict Cytokine Release Syndrome (CRS) after Chimeric Antigen Receptor (CAR) T Cell Therapy for Acute Lymphoblastic Leukemia (ALL). Blood, 2015, 126, 1334-1334.	1.4	5
58	The Beginning of the End of Package Deal Therapy for Patients With High-Risk Neuroblastoma?. Journal of Clinical Oncology, 2016, 34, 2437-2439.	1.6	4
59	Novel Chimeric Antigen Receptor T Cells for the Treatment of CD19-Negative Relapses Occurring after CD19-Targeted Immunotherapies. Blood, 2014, 124, 966-966.	1.4	4
60	Partially CD3+-Depleted Unrelated and Haploidentical Donor Peripheral Stem Cell Transplantation Has Favorable Graft-versus-Host Disease and Survival Rates in Pediatric Hematologic Malignancy. Biology of Blood and Marrow Transplantation, 2020, 26, 493-501.	2.0	3
61	Index of Suspicion. Pediatrics in Review, 2008, 29, 201-206.	0.4	2
62	Thoracic duct lymphatic fluid harbors phenotypically naive T cells for use in adoptive T-cell therapy. Cytotherapy, 2020, 22, 529-535.	0.7	2
63	Prediction of Patients at Risk of CD19Neg Relapse Following CD19-Directed CAR T Cell Therapy in B Cell Precursor Acute Lymphoblastic Leukemia. Blood, 2019, 134, 749-749.	1.4	2
64	CAR T Cells for Solid Tumors. Current Stem Cell Reports, 2017, 3, 269-278.	1.6	1
65	Getting the most from your CAR target. Blood, 2018, 132, 1467-1468.	1.4	1
66	IMMU-16. TARGETING GLYPICAN 2 (GPC2) ON PEDIATRIC MALIGNANT BRAIN TUMORS WITH MRNA CAR T CELLS. Neuro-Oncology, 2021, 23, i30-i30.	1.2	1
67	Bioluminescent Tracking of Human and Mouse Acute Lymphoblastic Leukemia Reveals Potent Immunogenicity of Luciferase In Some Preclinical Models of Leukemia. Blood, 2010, 116, 2140-2140.	1.4	1
68	IMMU-04. DEVELOPMENT OF GPC2-DIRECTED CHIMERIC ANTIGEN RECEPTOR THERAPY FOR PEDIATRIC BRAIN TUMORS WITH IN VITRO TRANSCRIBED mRNA. Neuro-Oncology, 2019, 21, ii93-ii93.	1.2	0
69	Improving and Maintaining Responses in Pediatric B–Cell Acute Lymphoblastic Leukemia Chimeric Antigen Receptor–T Cell Therapy. Cancer Journal (Sudbury, Mass), 2021, 27, 151-158.	2.0	0
70	IMMU-17. USE OF MRNA FOR SAFE AND EFFECTIVE GD2-DIRECTED CAR T CELLS TO TREAT DIFFUSE MIDLINE GLIOMAS. Neuro-Oncology, 2021, 23, i30-i31.	1.2	0
71	A Novel Model of Immune-Mediated Disease Equilibrium in Acute Lymphoblastic Leukemia. Blood, 2012, 120, 3540-3540.	1.4	0
72	Pre-Clinical Development Of a Novel Chimerical Antigen Receptor Targeting High-Risk Pediatric ALL Over-Expressing Tslpr. Blood, 2013, 122, 2665-2665.	1.4	0

#	Article	IF	CITATIONS
73	A phenotypic screen for compounds that reverse cAMP-mediated suppression of T cell functions SLAS Discovery, 2022, , .	2.7	0