Denis R Nurmukhametov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6368265/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Laser Initiation of Energetic Materials: Selective Photoinitiation Regime in Pentaerythritol Tetranitrate. Journal of Physical Chemistry C, 2011, 115, 6893-6901.	3.1	90
2	Explosive decomposition of PETN with nanoaluminum additives under the influence of pulsed laser radiation at different wavelengths. Russian Journal of Physical Chemistry B, 2013, 7, 453-456.	1.3	36
3	Photosensitive material based on PETN mixtures with aluminum nanoparticles. Combustion, Explosion and Shock Waves, 2012, 48, 361-366.	0.8	31
4	Integrating sphere study of the optical properties of aluminum nanoparticles in tetranitropentaerytrite. Technical Physics, 2014, 59, 1387-1392.	0.7	27
5	Effect of ultrafine Al-C particle additives on the PETN sensitivity to radiation exposure. Combustion, Explosion and Shock Waves, 2013, 49, 215-218.	0.8	21
6	Laser pulse initiation of RDX-Al and PETN-Al composites explosion. Combustion and Flame, 2020, 216, 468-471.	5.2	21
7	Controlling pentaerythrite tetranitrate sensitivity to the laser effect through the addition of nickel and aluminum nanoparticles. Russian Journal of Physical Chemistry B, 2014, 8, 352-355.	1.3	19
8	Laser initiation of PETN-based composites with additives of ultrafine aluminium particles. Combustion, Explosion and Shock Waves, 2016, 52, 713-718.	0.8	15
9	Laser initiation of PETN in the mode of resonance photoinitiation. Russian Journal of Physical Chemistry B, 2011, 5, 67-74.	1.3	14
10	Determining the optical properties of light-diffusing systems using a photometric sphere. Instruments and Experimental Techniques, 2015, 58, 765-770.	0.5	12
11	Laser ignition of low-rank coal. Russian Journal of Physical Chemistry B, 2016, 10, 963-965.	1.3	12
12	Laser initiation of PETN containing light-scattering additives. Technical Physics Letters, 2010, 36, 285-287.	0.7	10
13	Initiation of Explosion of Pentaerythritol Tetranitrate by Pulses of the First and Second Harmonics of a Neodymium Laser. Russian Physics Journal, 2015, 58, 1093-1097.	0.4	10
14	Optoacoustic Effects in Pentaerythritol Tetranitrate with Ultrafine Aluminum-Particle Inclusions under Pulsed-Laser Action. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2018, 124, 412-417.	0.6	10
15	Light absorption by formulations based on PETN and aluminum nanoparticles during pulsed laser irradiation. Russian Journal of Physical Chemistry B, 2014, 8, 852-855.	1.3	9
16	Laser initiation of PETN–iron nanoparticle composites. Russian Journal of Physical Chemistry B, 2016, 10, 615-620.	1.3	9
17	The influence of added aluminum nanoparticles on the sensitivity of pentaerythritol tetranitrate to laser irradiation. Russian Journal of Physical Chemistry B, 2011, 5, 290-292.	1.3	8
18	Studies of the contribution of light scattering and absorption by inclusions of aluminum nanoparticlese in PETN. Combustion, Explosion and Shock Waves, 2015, 51, 347-352.	0.8	8

#	Article	IF	CITATIONS
19	Influence of the size of inclusions of ultrafine nickel particles on the laser initiation threshold of PETN. Combustion, Explosion and Shock Waves, 2015, 51, 472-475.	0.8	8
20	Spectrokinetic characteristics of light emission at the early stages of the laser-initiated explosive decomposition of PETN-based composites containing metal nanoparticle inclusions. Russian Journal of Physical Chemistry B, 2017, 11, 460-465.	1.3	8
21	Sensitivity of a mechanical mixture of pentaerythrite tetranitrate and Ni-C nanoparticles to explosion initiation by laser pulses. Combustion, Explosion and Shock Waves, 2009, 45, 59-63.	0.8	7
22	Efficiency of laser initiation and absorption spectra of PETN. Russian Journal of Physical Chemistry B, 2010, 4, 63-65.	1.3	7
23	Effect of temperature on the laser initiation of pentaerythritol tetranitrate (PETN). Russian Journal of Physical Chemistry B, 2008, 2, 375-377.	1.3	6
24	Initiation of the explosive decomposition of pentaerythritol tetranitrate with ultradispersed particle additives by laser pulses. Solid Fuel Chemistry, 2012, 46, 371-374.	0.7	6
25	Initiation of PETN explosion by the second harmonic pulse of a neodymium laser. Combustion, Explosion and Shock Waves, 2014, 50, 113-117.	0.8	6
26	Characteristics of the initiation of the explosive decomposition of PETN by the second-harmonic pulsed radiation of a neodymium laser. Russian Journal of Physical Chemistry B, 2015, 9, 915-920.	1.3	6
27	Laser initiation of compositions based on PETN with submicron coal particles. Combustion, Explosion and Shock Waves, 2016, 52, 593-599.	0.8	6
28	Achieving tunable chemical reactivity through photo-initiation of energetic materials at metal oxide surfaces. Physical Chemistry Chemical Physics, 2020, 22, 25284-25296.	2.8	6
29	Effect of preliminary irradiation on the detonation sensitivity of lead azide. Technical Physics Letters, 2006, 32, 28-29.	0.7	5
30	Preexplosion stage duration in laser-initiated PETN. Technical Physics Letters, 2009, 35, 1051-1053.	0.7	5
31	Pressure of the products of the explosive decomposition of a mixture of pentaerythritol tetranitrate and nickel monocarbide nanoparticles initiated by laser radiation. Russian Journal of Physical Chemistry B, 2010, 4, 81-84.	1.3	5
32	Photochemical and photothermal dissociation of PETN during laser initiation. Russian Journal of Physical Chemistry B, 2011, 5, 658-660.	1.3	5
33	RDX-Al and PETN-Al composites' glow spectral kinetics at the explosion initiated with laser pulse. Combustion and Flame, 2021, 223, 376-381.	5.2	5
34	Luminescence of Silver Azide under Pulsed Excitation. Combustion, Explosion and Shock Waves, 2005, 41, 467-473.	0.8	4
35	Influence of the mass fraction of oxide in aluminum nanoparticles on the explosive decomposition threshold and light absorption efficiency in PETN-based compounds. Combustion, Explosion and Shock Waves, 2014, 50, 578-581.	0.8	4
36	Temperature dependence of the threshold of initiation of pentaerythritol tetranitrate–aluminum composite by second-harmonic radiation of a neodymium laser. Russian Journal of Physical Chemistry B, 2015, 9, 644-647.	1.3	4

#	Article	IF	CITATIONS
37	Spectral-kinetic characteristics of luminescence of pentaerythritol tetranitrate with inclusions of iron nanoparticles upon explosion induced by laser pulses. Optics and Spectroscopy (English) Tj ETQq1 1 0.7843	l 40r.gBT /C	overlock 10 T
38	Measuring the temperature of PETN explosion products with iron inclusions. Combustion, Explosion and Shock Waves, 2017, 53, 349-352.	0.8	4
39	Observation of surface plasmon resonance of gold nanoparticles in energy-related material: pentaerythritol tetranitrate. Quantum Electronics, 2017, 47, 647-650.	1.0	4
40	Effect of radiation treatment on silver azide sensitivity. Combustion, Explosion and Shock Waves, 2006, 42, 227-230.	0.8	3
41	Effect of additives of nickel monocarbide nanoparticles on the sensitivity of pentaerythritol tetranitrate to laser irradiation. Russian Journal of Physical Chemistry B, 2009, 3, 923-925.	1.3	3
42	Laser initiation of a mixture of PETN with NiC nanoparticles at elevated temperatures. Russian Journal of Physical Chemistry B, 2010, 4, 452-456.	1.3	3
43	Effect of the initial temperature on the threshold of laser initiation of pentaerythritol tetranitrate seeded with aluminum nanoparticles. Russian Journal of Physical Chemistry B, 2012, 6, 511-516.	1.3	3
44	Determining the temperature of silver azide explosion products. Technical Physics Letters, 2006, 32, 23-24.	0.7	2
45	The regulation of secondary explosives sensitivity to laser influence. IOP Conference Series: Materials Science and Engineering, 2016, 110, 012010.	0.6	2
46	Photoacoustic Signals in Methylene Blue Solutions in Water/Glycerol Mixture Containing Titanium Dioxide Nanoparticles. Journal of Applied Spectroscopy, 2017, 84, 413-419.	0.7	2
47	Absorption Spectra of Gold Nanoparticle Suspensions. Russian Physics Journal, 2018, 60, 1651-1658.	0.4	2
48	Effect of radiation treatment on the explosive conduction kinetics of heavy metal azides. Combustion, Explosion and Shock Waves, 2007, 43, 691-696.	0.8	1
49	A study into light scattering and absorption by aluminum nanoparticles in PETN. Journal of Physics: Conference Series, 2014, 552, 012032.	0.4	1
50	Absorption profile of laser impulse of composites based on transparent matrix and metal nanoparticles. Thermal Science, 2019, 23, 553-560.	1.1	1
51	Laser Initiation of PETN containing Nickel Inclusions. IOP Conference Series: Materials Science and Engineering, 2017, 168, 012011.	0.6	0