Zhong-Ling Lang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6367989/publications.pdf

Version: 2024-02-01

257450 361022 2,466 37 24 35 citations g-index h-index papers 37 37 37 3185 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Computational evaluation of FeMo heteroatom coeffect induced high electroreduction activity of N2-to-NH3. Applied Surface Science, 2022, 579, 152214.	6.1	15
2	Advanced Ru/Ni/WC@NPC Multiâ€Interfacial Electrocatalyst for Efficient Sustainable Hydrogen and Chlorâ€Alkali Coâ€Production. Advanced Energy Materials, 2022, 12, .	19.5	52
3	Copperâ€Bridged Tetrakis(4â€ethynylphenyl)ethene Aggregates with Photoâ€Regulated ¹ O ₂ and O ₂ ^{â°'} Generation for Selective Photocatalytic Aerobic Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
4	Ru/Mo ₂ C@NC Schottky junction-loaded hollow nanospheres as an efficient hydrogen evolution electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 20518-20529.	10.3	30
5	Density functional theory study of single-molecule ferroelectricity in Preyssler-type polyoxometalates. APL Materials, 2021, 9, .	5.1	5
6	Enhanced Cuprophilic Interactions in Crystalline Catalysts Facilitate the Highly Selective Electroreduction of CO ₂ to CH ₄ . Journal of the American Chemical Society, 2021, 143, 3808-3816.	13.7	187
7	Revealing Hydrogen Evolution Performance of Single-Atom Platinum Electrocatalyst with Polyoxometalate Molecular Models. ACS Energy Letters, 2021, 6, 4055-4062.	17.4	35
8	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie, 2020, 132, 3933-3937.	2.0	10
9	A Hydrolytically Stable Vanadium(IV) Metal–Organic Framework with Photocatalytic Bacteriostatic Activity for Autonomous Indoor Humidity Control. Angewandte Chemie - International Edition, 2020, 59, 3905-3909.	13.8	63
10	Highly Efficient Photoreduction of Lowâ€Concentration CO ₂ to Syngas by Using a Polyoxometalates/Ru ^{II} Composite. Chemistry - A European Journal, 2020, 26, 2735-2740.	3.3	38
11	Water–gas shift reaction co-catalyzed by polyoxometalate (POM)–gold composites: the "magic―role of POMs. Catalysis Science and Technology, 2020, 10, 8219-8229.	4.1	8
12	Element table of TM-substituted polyoxotungstates for direct electrocatalytic reduction of nitric oxide to ammonia: a DFT guideline for experiments. Inorganic Chemistry Frontiers, 2020, 7, 4507-4516.	6.0	19
13	Revival of Zeoliteâ€Templated Nanocarbon Materials: Recent Advances in Energy Storage and Conversion. Advanced Science, 2020, 7, 2001335.	11.2	42
14	Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. Chemical Science, 2020, 11, 3007-3015.	7.4	61
15	Semiconductor/Covalentâ€Organicâ€Framework Zâ€6cheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie, 2020, 132, 6562-6568.	2.0	44
16	Semiconductor/Covalentâ€Organicâ€Framework Zâ€Scheme Heterojunctions for Artificial Photosynthesis. Angewandte Chemie - International Edition, 2020, 59, 6500-6506.	13.8	328
17	Pt-O bond as an active site superior to PtO in hydrogen evolution reaction. Nature Communications, 2020, 11, 490.	12.8	184
18	Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Materials, 2020, 8, .	5.1	23

#	Article	IF	CITATIONS
19	Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater. Advanced Functional Materials, 2019, 29, 1805893.	14.9	69
20	A switchable-selectivity multiple-interface Ni-WC hybrid catalyst for efficient nitroarene reduction. Journal of Catalysis, 2019, 377, 174-182.	6.2	24
21	Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis. Energy and Environmental Science, 2019, 12, 2569-2580.	30.8	137
22	Atomic Nb Anchoring on Graphdiyne as a New Potential Electrocatalyst for Nitrogen Fixation: A Computational View. Advanced Theory and Simulations, 2019, 2, 1900132.	2.8	38
23	Electrocatalytic Hydrogen Production: Polyoxometalateâ€Derived Hexagonal Molybdenum Nitrides (MXenes) Supported by Boron, Nitrogen Codoped Carbon Nanotubes for Efficient Electrochemical Hydrogen Evolution from Seawater (Adv. Funct. Mater. 8/2019). Advanced Functional Materials, 2019, 29. 1970046.	14.9	28
24	Controlling the Activity and Stability of Electrochemical Interfaces Using Atom-by-Atom Metal Substitution of Redox Species. ACS Nano, 2019, 13, 458-466.	14.6	29
25	Electrocatalytic performance of ultrasmall Mo ₂ C affected by different transition metal dopants in hydrogen evolution reaction. Nanoscale, 2018, 10, 6080-6087.	5.6	151
26	A Co ₂ P/WC Nanoâ€Heterojunction Covered with Nâ€Doped Carbon as Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. ChemSusChem, 2018, 11, 1082-1091.	6.8	85
27	A highly efficient Z-scheme B-doped g-C ₃ N ₄ /SnS ₂ photocatalyst for CO ₂ reduction reaction: a computational study. Journal of Materials Chemistry A, 2018, 6, 21056-21063.	10.3	134
28	Oxygenâ€Doped Nickel Iron Phosphide Nanocube Arrays Grown on Ni Foam for Oxygen Evolution Electrocatalysis. Small, 2018, 14, e1802204.	10.0	161
29	Highly efficient hydrogen evolution triggered by a multi-interfacial Ni/WC hybrid electrocatalyst. Energy and Environmental Science, 2018, 11, 2114-2123.	30.8	224
30	Ultrafine cable-like WC/W ₂ C heterojunction nanowires covered by graphitic carbon towards highly efficient electrocatalytic hydrogen evolution. Journal of Materials Chemistry A, 2018, 6, 15395-15403.	10.3	92
31	Counterintuitive Adsorption of [PW ₁₁ O ₃₉] ^{7–} on Au(100). Inorganic Chemistry, 2017, 56, 3961-3969.	4.0	18
32	Solid-state structural transformation doubly triggered by reaction temperature and time in 3D metal-organic frameworks: great enhancement of stability and gas adsorption. Chemical Science, 2014, 5, 1368.	7.4	62
33	Bonding interactions between sulfur dioxide (SO ₂) and mono-ruthenium(<scp>ii</scp>)-substituted Keggin-type polyoxometalates: electronic structures of ruthenium–SO ₂ adducts. Physical Chemistry Chemical Physics, 2014, 16, 18017.	2.8	15
34	DFT characterization on the mechanism of water splitting catalyzed by single-Ru-substituted polyoxometalates. Dalton Transactions, 2013, 42, 10617.	3.3	30
35	The self-assembly mechanism of the Lindqvist anion [W6O19]2â^' in aqueous solution: a density functional theory study. Dalton Transactions, 2012, 41, 11361.	3.3	15
36	Molecular Iron Oxide Clusters Boost the Oxygen Reduction Reaction of Platinum Electrocatalysts at Nearâ€Neutral pH. Angewandte Chemie, 0, , .	2.0	0