
Ermei M Mäkilä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6367663/publications.pdf Version: 2024-02-01

Ερμει Μ Μῶι ῶι ῶι

#	Article	IF	CITATIONS
1	Biocompatibility of Thermally Hydrocarbonized Porous Silicon Nanoparticles and their Biodistribution in Rats. ACS Nano, 2010, 4, 3023-3032.	7.3	316
2	Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. European Journal of Pharmaceutical Sciences, 2016, 90, 53-63.	1.9	224
3	Three-Dimensional Printed PCL-Based Implantable Prototypes of Medical Devices for Controlled Drug Delivery. Journal of Pharmaceutical Sciences, 2016, 105, 2665-2676.	1.6	197
4	Size, Stability, and Porosity of Mesoporous Nanoparticles Characterized with Light Scattering. Nanoscale Research Letters, 2017, 12, 74.	3.1	168
5	The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials, 2013, 34, 7776-7789.	5.7	163
6	In vitro cytotoxicity of porous silicon microparticles: Effect of the particle concentration, surface chemistry and size. Acta Biomaterialia, 2010, 6, 2721-2731.	4.1	158
7	Drug permeation across intestinal epithelial cells using porous silicon nanoparticles. Biomaterials, 2011, 32, 2625-2633.	5.7	157
8	Porous silicon nanoparticles for nanomedicine: preparation and biomedical applications. Nanomedicine, 2014, 9, 535-554.	1.7	155
9	Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663.	2.3	146
10	Drug Delivery Formulations of Ordered and Nonordered Mesoporous Silica: Comparison of Three Drug Loading Methods. Journal of Pharmaceutical Sciences, 2011, 100, 3294-3306.	1.6	144
11	Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy. Advanced Materials, 2017, 29, 1603239.	11.1	144
12	Co-delivery of a hydrophobic small molecule and a hydrophilic peptide by porous silicon nanoparticles. Journal of Controlled Release, 2013, 170, 268-278.	4.8	141
13	Multifunctional porous silicon nanoparticles for cancer theranostics. Biomaterials, 2015, 48, 108-118.	5.7	141
14	Fabrication of a Multifunctional Nanoâ€inâ€micro Drug Delivery Platform by Microfluidic Templated Encapsulation of Porous Silicon in Polymer Matrix. Advanced Materials, 2014, 26, 4497-4503.	11.1	138
15	Microfluidic assisted one-step fabrication of porous silicon@acetalated dextran nanocomposites for precisely controlled combination chemotherapy. Biomaterials, 2015, 39, 249-259.	5.7	133
16	The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials, 2014, 35, 9199-9207.	5.7	127
17	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	5.7	125
18	Comparison of mesoporous silicon and non-ordered mesoporous silica materials as drug carriers for itraconazole. International Journal of Pharmaceutics, 2011, 414, 148-156.	2.6	124

#	Article	IF	CITATIONS
19	Core/Shell Nanocomposites Produced by Superfast Sequential Microfluidic Nanoprecipitation. Nano Letters, 2017, 17, 606-614.	4.5	123
20	Versatile Cellulose-Based Carbon Aerogel for the Removal of Both Cationic and Anionic Metal Contaminants from Water. ACS Applied Materials & amp; Interfaces, 2015, 7, 25875-25883.	4.0	119
21	Meso- and microporous soft templated hydrothermal carbons for dye removal from water. Green Chemistry, 2016, 18, 1137-1146.	4.6	118
22	Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials, 2013, 34, 9210-9219.	5.7	116
23	Inhibition of Multidrug Resistance of Cancer Cells by Coâ€Đelivery of DNA Nanostructures and Drugs Using Porous Silicon Nanoparticles@Giant Liposomes. Advanced Functional Materials, 2015, 25, 3330-3340.	7.8	114
24	Microfluidic assembly of a nano-in-micro dual drug delivery platform composed of halloysite nanotubes and a pH-responsive polymer for colon cancer therapy. Acta Biomaterialia, 2017, 48, 238-246.	4.1	109
25	Amine Modification of Thermally Carbonized Porous Silicon with Silane Coupling Chemistry. Langmuir, 2012, 28, 14045-14054.	1.6	108
26	Amine-modified hyaluronic acid-functionalized porous silicon nanoparticles for targeting breast cancer tumors. Nanoscale, 2014, 6, 10377-10387.	2.8	108
27	Microfluidic Assembly of Monodisperse Multistage pHâ€Responsive Polymer/Porous Silicon Composites for Precisely Controlled Multiâ€Drug Delivery. Small, 2014, 10, 2029-2038.	5.2	105
28	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	5.7	105
29	Acid mine drainage (AMD) treatment: Neutralization and toxic elements removal with unmodified and modified limestone. Ecological Engineering, 2015, 81, 30-40.	1.6	99
30	Microfluidic Assembly of a Multifunctional Tailorable Composite System Designed for Site Specific Combined Oral Delivery of Peptide Drugs. ACS Nano, 2015, 9, 8291-8302.	7.3	96
31	Copper-free azide–alkyne cycloaddition of targeting peptides toÂporous silicon nanoparticles for intracellular drug uptake. Biomaterials, 2014, 35, 1257-1266.	5.7	94
32	Thiolation and Cellâ€Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin. Advanced Functional Materials, 2016, 26, 3405-3416.	7.8	94
33	Development and optimization of methotrexate-loaded lipid-polymer hybrid nanoparticles for controlled drug delivery applications. International Journal of Pharmaceutics, 2017, 533, 156-168.	2.6	93
34	Photothermal-responsive nanosized hybrid polymersome as versatile therapeutics codelivery nanovehicle for effective tumor suppression. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7744-7749.	3.3	85
35	Effect of isotonic solutions and peptide adsorption on zeta potential of porous silicon nanoparticle drug delivery formulations. International Journal of Pharmaceutics, 2012, 431, 230-236.	2.6	82
36	Adsorption behavior of hydrothermally treated municipal sludge & pulp and paper industry sludge. Bioresource Technology, 2013, 147, 71-76.	4.8	82

#	Article	IF	CITATIONS
37	Drug‣oaded Multifunctional Nanoparticles Targeted to the Endocardial Layer of the Injured Heart Modulate Hypertrophic Signaling. Small, 2017, 13, 1701276.	5.2	82
38	Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics. Advanced Materials, 2018, 30, e1703393.	11,1	80
39	Systematic Evaluation of Transferrin-Modified Porous Silicon Nanoparticles for Targeted Delivery of Doxorubicin to Glioblastoma. ACS Applied Materials & Interfaces, 2019, 11, 33637-33649.	4.0	80
40	Mesoporous Silicon (PSi) for Sustained Peptide Delivery: Effect of PSi Microparticle Surface Chemistry on Peptide YY3-36 Release. Pharmaceutical Research, 2012, 29, 837-846.	1.7	79
41	Dual-drug delivery by porous silicon nanoparticles for improved cellular uptake, sustained release, and combination therapy. Acta Biomaterialia, 2015, 16, 206-214.	4.1	78
42	Multistage pH-responsive mucoadhesive nanocarriers prepared by aerosol flow reactor technology: A controlled dual protein-drug delivery system. Biomaterials, 2015, 68, 9-20.	5.7	77
43	Tumour homing peptide-functionalized porous silicon nanovectors for cancer therapy. Biomaterials, 2013, 34, 9134-9141.	5.7	76
44	Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab on A Chip, 2014, 14, 1083-1086.	3.1	75
45	Determination of the Physical State of Drug Molecules in Mesoporous Silicon with Different Surface Chemistries. Langmuir, 2009, 25, 6137-6142.	1.6	73
46	InÂvivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35, 8394-8405.	5.7	73
47	Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters, 2018, 18, 1448-1453.	4.5	73
48	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	5.7	73
49	Nanostructured Porous Siliconâ€Solid Lipid Nanocomposite: Towards Enhanced Cytocompatibility and Stability, Reduced Cellular Association, and Prolonged Drug Release. Advanced Functional Materials, 2013, 23, 1893-1902.	7.8	72
50	Surface chemistry dependent immunostimulative potential of porous silicon nanoplatforms. Biomaterials, 2014, 35, 9224-9235.	5.7	72
51	InÂvitro and inÂvivo assessment of heart-homing porous silicon nanoparticles. Biomaterials, 2016, 94, 93-104.	5.7	72
52	Functional hydrophobin-coating of thermally hydrocarbonized porous silicon microparticles. Biomaterials, 2011, 32, 9089-9099.	5.7	71
53	Inhibition of Influenza A Virus Infection <i>in Vitro</i> by Saliphenylhalamide-Loaded Porous Silicon Nanoparticles. ACS Nano, 2013, 7, 6884-6893.	7.3	71
54	Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydrate Polymers, 2013, 93, 291-299.	5.1	70

#	Article	IF	CITATIONS
55	¹⁸ F-Labeled Modified Porous Silicon Particles for Investigation of Drug Delivery Carrier Distribution in Vivo with Positron Emission Tomography. Molecular Pharmaceutics, 2011, 8, 1799-1806.	2.3	65
56	Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. International Journal of Pharmaceutics, 2018, 536, 241-250.	2.6	65
57	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	2.8	63
58	Augmented cellular trafficking and endosomal escape of porous silicon nanoparticles via zwitterionic bilayer polymer surface engineering. Biomaterials, 2014, 35, 7488-7500.	5.7	61
59	Optical gas sensing properties of thermally hydrocarbonized porous silicon Bragg reflectors. Optics Express, 2009, 17, 5446.	1.7	60
60	Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications. Advanced Functional Materials, 2015, 25, 1488-1497.	7.8	60
61	Fabrication and Characterization of Drug-Loaded Conductive Poly(glycerol) Tj ETQq1 1 0.784314 rgBT /Overlock Materials & Interfaces, 2020, 12, 6899-6909.	2 10 Tf 50 4.0	507 Td (sebac 57
62	Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS Applied Materials & Interfaces, 2015, 7, 23197-23204.	4.0	55
63	Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticleâ€functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy. Advanced Materials, 2016, 28, 10195-10203.	11.1	55
64	Inhibitory Activity of the Isoflavone Biochanin A on Intracellular Bacteria of Genus Chlamydia and Initial Development of a Buccal Formulation. PLoS ONE, 2014, 9, e115115.	1.1	54
65	A prospective cancer chemo-immunotherapy approach mediated by synergistic CD326 targeted porous silicon nanovectors. Nano Research, 2015, 8, 1505-1521.	5.8	54
66	Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelleâ€Like Functions. Advanced Materials, 2017, 29, 1605375.	11.1	54
67	Robust shape-retaining nanocellulose-based aerogels decorated with silver nanoparticles for fast continuous catalytic discoloration of organic dyes. Separation and Purification Technology, 2020, 242, 116523.	3.9	54
68	Engineered Multifunctional Albuminâ€Đecorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. Small, 2018, 14, e1800462.	5.2	53
69	Receptor-Mediated Surface Charge Inversion Platform Based on Porous Silicon Nanoparticles for Efficient Cancer Cell Recognition and Combination Therapy. ACS Applied Materials & Interfaces, 2017, 9, 10034-10046.	4.0	51
70	Cellular Internalization–Induced Aggregation of Porous Silicon Nanoparticles for Ultrasound Imaging and Proteinâ€Mediated Protection of Stem Cells. Small, 2019, 15, e1804332.	5.2	51
71	Production of magnesium hydroxide from magnesium silicate for the purpose of CO2 mineralization – Part 2: Mg extraction modeling and application to different Mg silicate rocks. Minerals Engineering, 2012, 30, 87-94.	1.8	50
72	Pretargeted PET Imaging of <i>trans</i> -Cyclooctene-Modified Porous Silicon Nanoparticles. ACS Omega, 2017, 2, 62-69.	1.6	50

#	Article	IF	CITATIONS
73	Quercetinâ€Based Modified Porous Silicon Nanoparticles for Enhanced Inhibition of Doxorubicinâ€Resistant Cancer Cells. Advanced Healthcare Materials, 2017, 6, 1601009.	3.9	49
74	Industrial products and wastes as adsorbents for sulphate and chloride removal from synthetic alkaline solution and mine process water. Chemical Engineering Journal, 2015, 259, 364-371.	6.6	48
75	Thermally Carbonized Porous Silicon and Its Recent Applications. Advanced Materials, 2018, 30, e1703819.	11.1	48
76	Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS Applied Materials & Interfaces, 2018, 10, 44354-44367.	4.0	47
77	Close-loop dynamic nanohybrids on collagen-ark with <i>in situ</i> gelling transformation capability for biomimetic stage-specific diabetic wound healing. Materials Horizons, 2019, 6, 385-393.	6.4	46
78	Microfluidic Templated Mesoporous Silicon–Solid Lipid Microcomposites for Sustained Drug Delivery. ACS Applied Materials & Interfaces, 2013, 5, 12127-12134.	4.0	45
79	Nitric oxide-releasing porous silicon nanoparticles. Nanoscale Research Letters, 2014, 9, 333.	3.1	45
80	Antibacterial properties of nitric oxide-releasing porous silicon nanoparticles. Journal of Materials Chemistry B, 2016, 4, 2051-2058.	2.9	45
81	Fabrication, characterization and evaluation of bacterial cellulose-based capsule shells for oral drug delivery. Cellulose, 2017, 24, 1445-1454.	2.4	45
82	Polydopamine Nanoparticles Prepared Using Redox-Active Transition Metals. Journal of Physical Chemistry B, 2019, 123, 2513-2524.	1.2	45
83	Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. Journal of Controlled Release, 2016, 232, 113-119.	4.8	44
84	A Versatile Carbonic Anhydrase IX Targeting Ligand-Functionalized Porous Silicon Nanoplatform for Dual Hypoxia Cancer Therapy and Imaging. ACS Applied Materials & Interfaces, 2017, 9, 13976-13987.	4.0	44
85	Bioengineered Porous Silicon Nanoparticles@Macrophages Cell Membrane as Composite Platforms for Rheumatoid Arthritis. Advanced Functional Materials, 2018, 28, 1801355.	7.8	44
86	Poly(methyl vinyl etherâ€ <i>alt</i> â€maleic acid)â€Functionalized Porous Silicon Nanoparticles for Enhanced Stability and Cellular Internalization. Macromolecular Rapid Communications, 2014, 35, 624-629.	2.0	42
87	Studies on Chemical Modification of Porous Siliconâ€Based Gradedâ€Index Optical Microcavities for Improved Stability Under Alkaline Conditions. Advanced Functional Materials, 2012, 22, 3890-3898.	7.8	41
88	Effect of Water on a Hydrophobic Deep Eutectic Solvent. Journal of Physical Chemistry B, 2022, 126, 513-527.	1.2	41
89	New times, new trends for ethionamide: In vitro evaluation of drug-loaded thermally carbonized porous silicon microparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2012, 81, 314-323.	2.0	37
90	Integrated on-chip energy storage using passivated nanoporous-silicon electrochemical capacitors. Nano Energy, 2016, 25, 68-79.	8.2	37

#	Article	IF	CITATIONS
91	Electro-optical porous silicon gas sensor with enhanced selectivity. Sensors and Actuators B: Chemical, 2010, 147, 100-104.	4.0	36
92	Biohybrid Vaccines for Improved Treatment of Aggressive Melanoma with Checkpoint Inhibitor. ACS Nano, 2019, 13, 6477-6490.	7.3	36
93	Transferrin-targeted porous silicon nanoparticles reduce glioblastoma cell migration across tight extracellular space. Scientific Reports, 2020, 10, 2320.	1.6	36
94	Small interfering RNA delivery by polyethylenimine-functionalised porous silicon nanoparticles. Biomaterials Science, 2015, 3, 1555-1565.	2.6	35
95	Functionalization of Alkyne-Terminated Thermally Hydrocarbonized Porous Silicon Nanoparticles With Targeting Peptides and Antifouling Polymers: Effect on the Human Plasma Protein Adsorption. ACS Applied Materials & Interfaces, 2015, 7, 2006-2015.	4.0	33
96	Delivery of Flightless I siRNA from Porous Silicon Nanoparticles Improves Wound Healing in Mice. ACS Biomaterials Science and Engineering, 2016, 2, 2339-2346.	2.6	33
97	Platelet Lysate-Modified Porous Silicon Microparticles for Enhanced Cell Proliferation in Wound Healing Applications. ACS Applied Materials & Interfaces, 2016, 8, 988-996.	4.0	33
98	Electrostatic Interaction on Loading of Therapeutic Peptide GLP-1 into Porous Silicon Nanoparticles. Langmuir, 2015, 31, 1722-1729.	1.6	32
99	Tablet preformulations of indomethacin-loaded mesoporous silicon microparticles. International Journal of Pharmaceutics, 2012, 422, 125-131.	2.6	31
100	Intracellular responsive dual delivery by endosomolytic polyplexes carrying DNA anchored porous silicon nanoparticles. Journal of Controlled Release, 2017, 249, 111-122.	4.8	31
101	Coating Nanoparticles with Plant-Produced Transferrin–Hydrophobin Fusion Protein Enhances Their Uptake in Cancer Cells. Bioconjugate Chemistry, 2017, 28, 1639-1648.	1.8	31
102	Confinement Effects on Drugs in Thermally Hydrocarbonized Porous Silicon. Langmuir, 2014, 30, 2196-2205.	1.6	30
103	Porous silicon micro- and nanoparticles for printed humidity sensors. Applied Physics Letters, 2012, 101, .	1.5	29
104	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	1.6	29
105	<i>In Vivo</i> Evaluation of Porous Silicon and Porous Silicon Solid Lipid Nanocomposites for Passive Targeting and Imaging. Molecular Pharmaceutics, 2014, 11, 2876-2886.	2.3	27
106	Interactions between graphene sheets and ionic molecules used for the shear-assisted exfoliation of natural graphite. Carbon, 2014, 68, 195-209.	5.4	26
107	Controlled enlargement of pores by annealing of porous silicon. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1313-1317.	0.8	25
108	In vitro assessment of biopolymer-modified porous silicon microparticles for wound healing applications. European Journal of Pharmaceutics and Biopharmaceutics, 2014, 88, 635-642.	2.0	25

#	Article	IF	CITATIONS
109	Influence of Surface Chemistry on Ibuprofen Adsorption and Confinement in Mesoporous Silicon Microparticles. Langmuir, 2016, 32, 13020-13029.	1.6	25
110	Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As(III) and As(V) from mine water. Journal of Cleaner Production, 2016, 133, 1095-1104.	4.6	25
111	Regenerative Electroless Etching of Silicon. Angewandte Chemie - International Edition, 2017, 56, 624-627.	7.2	25
112	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors. Advanced Materials, 2022, 34, e2108012.	11.1	25
113	Engineered antibody-functionalized porous silicon nanoparticles for therapeutic targeting of pro-survival pathway in endogenous neuroblasts after stroke. Biomaterials, 2020, 227, 119556.	5.7	23
114	Neonatal Fc receptor-targeted lignin-encapsulated porous silicon nanoparticles for enhanced cellular interactions and insulin permeation across the intestinal epithelium. Bioactive Materials, 2022, 9, 299-315.	8.6	23
115	Fabrication of Porous Silicon Based Humidity Sensing Elements on Paper. Journal of Sensors, 2015, 2015, 1-10.	0.6	21
116	Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomaterials Science and Engineering, 2018, 4, 2308-2313.	2.6	21
117	Thermally promoted addition of undecylenic acid on thermally hydrocarbonized porous silicon optical reflectors. Nanoscale Research Letters, 2012, 7, 311.	3.1	20
118	Use of carbonate rocks for flue gas desulfurization: Reactive dissolution of limestone particles. Applied Energy, 2012, 90, 175-181.	5.1	20
119	Selective Optical Response of Hydrolytically Stable Stratified Si Rugate Mirrors to Liquid Infiltration. ACS Applied Materials & Interfaces, 2014, 6, 2884-2892.	4.0	18
120	Gas Sensor using Anodic TiO2 Thin Film for Monitoring Hydrogen. Procedia Engineering, 2012, 47, 791-794.	1.2	17
121	A study of monitoring hydrogen using mesoporous TiO2 synthesized by anodization. Sensors and Actuators B: Chemical, 2013, 189, 246-250.	4.0	16
122	Optimization of a Wet Flue Gas Desulfurization Scrubber through Mathematical Modeling of Limestone Dissolution Experiments. Industrial & Engineering Chemistry Research, 2015, 54, 9783-9797.	1.8	15
123	A multifunctional nanocomplex for enhanced cell uptake, endosomal escape and improved cancer therapeutic effect. Nanomedicine, 2017, 12, 1401-1420.	1.7	15
124	Stencil Printing—A Novel Manufacturing Platform for Orodispersible Discs. Pharmaceutics, 2020, 12, 33.	2.0	13
125	Investigation of silicon nanoparticles produced by centrifuge chemical vapor deposition for applications in therapy and diagnostics. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 158, 254-265.	2.0	13
126	Lignocellulosic Nanocrystals from Sawmill Waste as Biotemplates for Free-Surfactant Synthesis of Photocatalytically Active Porous Silica. ACS Applied Materials & Interfaces, 2022, 14, 19547-19560.	4.0	13

#	Article	IF	CITATIONS
127	(Invited) Thermal Carbonization of Porous Silicon: The Current Status and Recent Applications. ECS Transactions, 2015, 69, 167-176.	0.3	12
128	Active diffusion of nanoparticles of maternal origin within the embryonic brain. Nanomedicine, 2016, 11, 2471-2481.	1.7	12
129	Excitation effects and luminescence stability in porous SiO ₂ :C layers. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1015-1021.	0.8	11
130	Revisiting the dissolution kinetics of limestone - experimental analysis and modeling. Journal of Chemical Technology and Biotechnology, 2016, 91, 1517-1531.	1.6	11
131	The impact of porous silicon nanoparticles on human cytochrome P450 metabolism in human liver microsomes in vitro. European Journal of Pharmaceutical Sciences, 2017, 104, 124-132.	1.9	11
132	Preparation and biological evaluation of ethionamide-mesoporous silicon nanoparticles against Mycobacterium tuberculosis. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 403-405.	1.0	11
133	Porous Silicon as a Platform for Radiation Theranostics Together with a Novel RIB-Based Radiolanthanoid. Contrast Media and Molecular Imaging, 2019, 2019, 1-9.	0.4	11
134	Synaptic and Fast Switching Memristance in Porous Silicon-Based Structures. Nanomaterials, 2019, 9, 825.	1.9	11
135	Influence of Cell Membrane Wrapping on the Cellâ^Porous Silicon Nanoparticle Interactions. Advanced Healthcare Materials, 2020, 9, e2000529.	3.9	11
136	Tandemâ€Massâ€Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. Advanced Science, 2020, 7, 2001129.	5.6	11
137	Citral-to-Menthol Transformations in a Continuous Reactor over Ni/Mesoporous Aluminosilicate Extrudates Containing a Sepiolite Clay Binder. Organic Process Research and Development, 2022, 26, 387-403.	1.3	11
138	Hybrid red blood cell membrane coated porous silicon nanoparticles functionalized with cancer antigen induce depletion of T cells. RSC Advances, 2020, 10, 35198-35205.	1.7	10
139	Ferromagnetism induced in ZnO nanorods by morphology changes under a nitrogen–carbon atmosphere. RSC Advances, 2013, 3, 12945.	1.7	9
140	Preparation and in vivo evaluation of red blood cell membrane coated porous silicon nanoparticles implanted with 155Tb. Nuclear Medicine and Biology, 2020, 84-85, 102-110.	0.3	9
141	Effectiveness of porous silicon nanoparticle treatment at inhibiting the migration of a heterogeneous glioma cell population. Journal of Nanobiotechnology, 2021, 19, 60.	4.2	9
142	Control of the nanosized defect network in superconducting thin films by target grain size. Scientific Reports, 2021, 11, 6010.	1.6	9
143	The correlation between the interference colour and growth procedure of anodic titanium dioxide nanotube arrays. Coloration Technology, 2014, 130, 1-7.	0.7	8
144	Hierarchical Nanostructuring of Porous Silicon with Electrochemical and Regenerative Electroless Etching. ACS Nano, 2019, 13, 13056-13064.	7.3	8

#	Article	IF	CITATIONS
145	One-step method for measuring the effect of humidity on powder resistivity. Journal of Electrostatics, 2013, 71, 159-164.	1.0	7
146	Influence of relative humidity on the electrostatic charging of lactose powder mixed with salbutamol sulphate. Journal of Electrostatics, 2017, 88, 201-206.	1.0	7
147	Controlled Shape and Nucleation Switching of Interfacially Polymerizable Nanoassemblies by Methyl Substitution. Chemistry of Materials, 2015, 27, 8170-8178.	3.2	6
148	Multistage signal-interactive nanoparticles improve tumor targeting through efficient nanoparticle-cell communications. Cell Reports, 2021, 35, 109131.	2.9	6
149	Insights into the Evaporation Kinetics of Indomethacin Solutions. Chemical Engineering and Technology, 2013, 36, 1300-1306.	0.9	5
150	Drug Delivery: Thiolation and Cell-Penetrating Peptide Surface Functionalization of Porous Silicon Nanoparticles for Oral Delivery of Insulin (Adv. Funct. Mater. 20/2016). Advanced Functional Materials, 2016, 26, 3374-3374.	7.8	5
151	Sequential Antifouling Surface for Efficient Modulation of the Nanoparticle–Cell Interactions in Proteinâ€Rich Environments. Advanced Therapeutics, 2018, 1, 1800013.	1.6	5
152	Quantitative Analysis of Porous Silicon Nanoparticles Functionalization by ¹ H NMR. ACS Biomaterials Science and Engineering, 2022, 8, 4132-4139.	2.6	5
153	Regenerative Electroless Etching of Silicon. Angewandte Chemie, 2017, 129, 639-642.	1.6	4
154	Nanohybrids: Multifunctional Nanohybrid Based on Porous Silicon Nanoparticles, Gold Nanoparticles, and Acetalated Dextran for Liver Regeneration and Acute Liver Failure Theranostics (Adv. Mater. 24/2018). Advanced Materials, 2018, 30, 1870168.	11.1	4
155	Influence of the specific surface area and silver crystallite size of mesoporous Ag/SrTiO 3 on the selectivity enhancement of ethylene oxide production. Journal of Chemical Technology and Biotechnology, 2019, 94, 3839-3849.	1.6	4
156	Red―and greenâ€emitting nanoâ€clay materials doped with Eu ³⁺ and/or Tb ³⁺ . Luminescence, 2019, 34, 23-38.	1.5	4
157	Colonic Delivery of αâ€Linolenic Acid by an Advanced Nutrient Delivery System Prolongs Glucagonâ€Like Peptideâ€L Secretion and Inhibits Food Intake in Mice. Molecular Nutrition and Food Research, 2022, 66, e2100978.	1.5	4
158	Thermal stabilization of porous silicon for biomedical applications. , 2014, , 21-34.		3
159	Synthesis and Features of Luminescent Bromo- and Iodohectorite Nanoclay Materials. Applied Sciences (Świtzerland), 2017, 7, 1243.	1.3	3
160	Hierarchical Porous Silicon and Porous Silicon Nanowires Produced with Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching (MACE). ECS Transactions, 2018, 86, 65-70.	0.3	3
161	Integrated on-chip energy storage using porous-silicon electrochemical capacitors. , 2014, , .		2
162	Drug Delivery: Onâ€Chip Selfâ€Assembly of a Smart Hybrid Nanocomposite for Antitumoral Applications (Adv. Funct. Mater. 10/2015). Advanced Functional Materials, 2015, 25, 1612-1612.	7.8	2

#	Article	IF	CITATIONS
163	Automatic methodologies to perform loading and release assays of anticancer drugs from mesoporous silicon nanoparticles. Talanta, 2019, 196, 277-283.	2.9	2
164	Kraft lignin-derived carbon sheets produced by molten salt-assisted thermal treatment – Graphitization behavior of the sheet structures. Diamond and Related Materials, 2022, 127, 109146.	1.8	2
165	Simulating the change in shape factor for solid particles used in flue gas desulfurization and reacting in stirred batch systems. A mathematical model Computer Aided Chemical Engineering, 2009, , 821-826.	0.3	1
166	Nanoreactors: Biomimetic Engineering Using Cancer Cell Membranes for Designing Compartmentalized Nanoreactors with Organelle‣ike Functions (Adv. Mater. 11/2017). Advanced Materials, 2017, 29, .	11.1	1
167	Effect of dehydration pathway on the surface properties of molecular crystals. CrystEngComm, 2021, 23, 5788-5794.	1.3	1
168	Porous Silicon Nanoparticles. , 2013, , 235-275.		1
169	Functionalization of Thermally Carbonized Porous Silicon Optical Multilayer Structures for Sensing Applications. ECS Transactions, 2013, 58, 63-70.	0.3	0
170	Drug Delivery: Gold Nanorods, DNA Origami, and Porous Silicon Nanoparticle-functionalized Biocompatible Double Emulsion for Versatile Targeted Therapeutics and Antibody Combination Therapy (Adv. Mater. 46/2016). Advanced Materials, 2016, 28, 10194-10194.	11.1	0
171	Nanovaccines: Multistaged Nanovaccines Based on Porous Silicon@Acetalated Dextran@Cancer Cell Membrane for Cancer Immunotherapy (Adv. Mater. 7/2017). Advanced Materials, 2017, 29, .	11.1	0
172	Regenerative Electroless Etching of Silicon. ECS Meeting Abstracts, 2017, , .	0.0	0
173	Hierarchical Porous Silicon and Porous Silicon Nanowires Produced with Regenerative Electroless Etching (ReEtching) and Metal Assisted Catalytic Etching (MACE). ECS Meeting Abstracts, 2018, , .	0.0	0
174	Thermal stabilization of porous silicon. , 2021, , 3-26.		0
175	Multifunctional Biomimetic Nanovaccines Based on Photothermal and Weakâ€Immunostimulatory Nanoparticulate Cores for the Immunotherapy of Solid Tumors (Adv. Mater. 9/2022). Advanced Materials, 2022, 34, .	11.1	0
176	Folic acid-mesoporous silicon nanoparticles enhance the anticancer activity of the p73-activating small molecule LEM2. International Journal of Pharmaceutics, 2022, 624, 121959.	2.6	0