
Sven Krappmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6367260/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The infectious propagules of <i>Aspergillus fumigatus</i> are coated with antimicrobial peptides. Cellular Microbiology, 2021, 23, e13301.	1.1	1
2	On the lineage of <i>Aspergillus fumigatus</i> isolates in common laboratory use. Medical Mycology, 2021, 59, 7-13.	0.3	57
3	Direct Visualization of Fungal Burden in Filamentous Fungus-Infected Silkworms. Journal of Fungi (Basel, Switzerland), 2021, 7, 136.	1.5	5
4	Cover Image: The infectious propagules of Aspergillus fumigatus are coated with antimicrobial peptides (Cellular Microbiology 03/2021). Cellular Microbiology, 2021, 23, e13314.	1.1	0
5	The master regulator MAT1-1-1 of fungal mating binds to its targets via a conserved motif in the human pathogen <i>Aspergillus fumigatus</i> . G3: Genes, Genomes, Genetics, 2021, 11, .	0.8	7
6	Aspergillus fumigatus Spores Are Not Able to Penetrate Silicone Breast Implant Shells. Annals of Plastic Surgery, 2020, 85, 306-309.	0.5	0
7	The Essential Thioredoxin Reductase of the Human Pathogenic Mold Aspergillus fumigatus Is a Promising Antifungal Target. Frontiers in Microbiology, 2020, 11, 1383.	1.5	14
8	Three-Dimensional Light Sheet Fluorescence Microscopy of Lungs To Dissect Local Host Immune-Aspergillus fumigatus Interactions. MBio, 2020, 11, .	1.8	49
9	Pseudomonas aeruginosa-Derived Volatile Sulfur Compounds Promote Distal Aspergillus fumigatus Growth and a Synergistic Pathogen-Pathogen Interaction That Increases Pathogenicity in Co-infection. Frontiers in Microbiology, 2019, 10, 2311.	1.5	39
10	Impairing fluoride export of Aspergillus fumigatus mitigates its voriconazole resistance. International Journal of Antimicrobial Agents, 2019, 53, 689-693.	1.1	1
11	Matingâ€ŧype factorâ€specific regulation of the fumagillin/pseurotin secondary metabolite supercluster in <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2018, 110, 1045-1065.	1.2	15
12	Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of the Pathogenic Fungus <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	1.8	53
13	Influence of Platelet-rich Plasma on the immune response of human monocyte-derived dendritic cells and macrophages stimulated with Aspergillus fumigatus. International Journal of Medical Microbiology, 2017, 307, 95-107.	1.5	35
14	The novel Aspergillus fumigatus MAT1-2-4 mating-type gene is required for mating and cleistothecia formation. Fungal Genetics and Biology, 2017, 108, 1-12.	0.9	19
15	CRISPR-Cas9, the new kid on the block of fungal molecular biology. Medical Mycology, 2017, 55, 16-23.	0.3	47
16	Systematic Identification of Anti-Fungal Drug Targets by a Metabolic Network Approach. Frontiers in Molecular Biosciences, 2016, 3, 22.	1.6	60
17	Current challenges of research on filamentous fungi in relation to human welfare and a sustainable bio-economy: a white paper. Fungal Biology and Biotechnology, 2016, 3, 6.	2.5	208
18	How to invade a susceptible host: cellular aspects of aspergillosis. Current Opinion in Microbiology, 2016, 34, 136-146.	2.3	21

#	Article	IF	CITATIONS
19	Exploration of Sulfur Assimilation of Aspergillus fumigatus Reveals Biosynthesis of Sulfur-Containing Amino Acids as a Virulence Determinant. Infection and Immunity, 2016, 84, 917-929.	1.0	41
20	ImmunoPET/MR imaging allows specific detection of <i>Aspergillus fumigatus</i> lung infection in vivo. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E1026-33.	3.3	119
21	Tet-on, or Tet-off, that is the question: Advanced conditional gene expression in Aspergillus. Fungal Genetics and Biology, 2016, 89, 72-83.	0.9	77
22	Mutant characterization and <i>in vivo</i> conditional repression identify aromatic amino acid biosynthesis to be essential for <i>Aspergillus fumigatus</i> virulence. Virulence, 2016, 7, 56-62.	1.8	46
23	Lightning up the worm: How to probe fungal virulence in an alternative mini-host by bioluminescence. Virulence, 2015, 6, 727-729.	1.8	5
24	Identification ofAspergillus fumigatusSurface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets. Journal of Infectious Diseases, 2015, 212, 1140-1149.	1.9	49
25	RNAseq analysis of Aspergillus fumigatus in blood reveals a just wait and see resting stage behavior. BMC Genomics, 2015, 16, 640.	1.2	25
26	Controlling Fungal Gene Expression Using the Doxycycline-Dependent Tet-ON System in Aspergillus fumigatus. Fungal Biology, 2015, , 131-138.	0.3	4
27	Genetic surgery in fungi: employing site-specific recombinases for genome manipulation. Applied Microbiology and Biotechnology, 2014, 98, 1971-1982.	1.7	17
28	Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus. International Journal of Medical Microbiology, 2014, 304, 1160-1168.	1.5	38
29	Regulation of Sulphur Assimilation Is Essential for Virulence and Affects Iron Homeostasis of the Human-Pathogenic Mould Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003573.	2.1	81
30	Upgrading Fungal Gene Expression on Demand: Improved Systems for Doxycycline-Dependent Silencing in Aspergillus fumigatus. Applied and Environmental Microbiology, 2013, 79, 1751-1754.	1.4	66
31	A sticky situation: extracellular DNA shapes Aspergillus fumigatus biofilms. Frontiers in Microbiology, 2013, 4, 159.	1.5	7
32	Surface display of <i>Gaussia princeps</i> luciferase allows sensitive fungal pathogen detection during cutaneous aspergillosis. Virulence, 2012, 3, 51-61.	1.8	19
33	Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to Echinocandins. Antimicrobial Agents and Chemotherapy, 2012, 56, 6121-6131.	1.4	53
34	Deciphering metabolic traits of the fungal pathogen Aspergillus fumigatus: redundancy vs. essentiality. Frontiers in Microbiology, 2012, 3, 414.	1.5	27
35	Shaping the fungal adaptome – Stress responses of Aspergillus fumigatus. International Journal of Medical Microbiology, 2011, 301, 408-416.	1.5	61
36	Phagocyte responses towards Aspergillus fumigatus. International Journal of Medical Microbiology, 2011, 301, 436-444.	1.5	50

Sven Krappmann

#	Article	IF	CITATIONS
37	Oligopeptide transport and regulation of extracellular proteolysis are required for growth of Aspergillus fumigatus on complex substrates but not for virulence. Molecular Microbiology, 2011, 82, 917-935.	1.2	37
38	The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro. PLoS ONE, 2011, 6, e16016.	1.1	72
39	Validation of a Self-Excising Marker in the Human Pathogen <i>Aspergillus fumigatus</i> by Employing the β-Rec/ <i>six</i> Site-Specific Recombination System. Applied and Environmental Microbiology, 2010, 76, 6313-6317.	1.4	122
40	Conserved Regulators of Mating Are Essential for Aspergillus fumigatus Cleistothecium Formation. Eukaryotic Cell, 2010, 9, 774-783.	3.4	72
41	A Regulator of <i>Aspergillus fumigatus</i> Extracellular Proteolytic Activity Is Dispensable for Virulence. Infection and Immunity, 2009, 77, 4041-4050.	1.0	72
42	VelB/VeA/LaeA Complex Coordinates Light Signal with Fungal Development and Secondary Metabolism. Science, 2008, 320, 1504-1506.	6.0	843
43	The Putative α-1,2-Mannosyltransferase AfMnt1 of the Opportunistic Fungal Pathogen <i>Aspergillus fumigatus</i> Is Required for Cell Wall Stability and Full Virulence. Eukaryotic Cell, 2008, 7, 1661-1673.	3.4	101
44	The Asexual Pathogen Aspergillus fumigatus Expresses Functional Determinants of Aspergillus nidulans Sexual Development. Eukaryotic Cell, 2008, 7, 1724-1732.	3.4	27
45	Gene targeting in filamentous fungi: the benefits of impaired repair. Fungal Biology Reviews, 2007, 21, 25-29.	1.9	101
46	Gene Targeting in Aspergillus fumigatus by Homologous Recombination Is Facilitated in a Nonhomologous End- Joining-Deficient Genetic Background. Eukaryotic Cell, 2006, 5, 212-215.	3.4	275
47	Tools to study molecular mechanisms of Aspergillus pathogenicity. Trends in Microbiology, 2006, 14, 356-364.	3.5	34
48	Deletion and Allelic Exchange of the Aspergillus fumigatus veA Locus via a Novel Recyclable Marker Module. Eukaryotic Cell, 2005, 4, 1298-1307.	3.4	118
49	The Aspergillus fumigatus transcriptional activator CpcA contributes significantly to the virulence of this fungal pathogen. Molecular Microbiology, 2004, 52, 785-799.	1.2	119
50	HARO7 Encodes Chorismate Mutase of the Methylotrophic Yeast Hansenula polymorpha and Is Derepressed upon Methanol Utilization. Journal of Bacteriology, 2000, 182, 4188-4197.	1.0	27
51	The aroC Gene of Aspergillus nidulansCodes for a Monofunctional, Allosterically Regulated Chorismate Mutase. Journal of Biological Chemistry, 1999, 274, 22275-22282.	1.6	35