Florence ArsÃ"ne-Ploetze

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6367113/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of arsenite and growth in biofilm conditions on the evolution of Thiomonas sp. CB2. Microbial Genomics, 2020, 6, .	1.0	0
2	Adaptation in toxic environments: comparative genomics of loci carrying antibiotic resistance genes derived from acid mine drainage waters. Environmental Science and Pollution Research, 2018, 25, 1470-1483.	2.7	16
3	Comparison of biofilm formation and motility processes in arsenicâ€resistant <i>Thiomonas</i> spp. strains revealed divergent response to arsenite. Microbial Biotechnology, 2017, 10, 789-803.	2.0	12
4	Spatio-Temporal Detection of the Thiomonas Population and the Thiomonas Arsenite Oxidase Involved in Natural Arsenite Attenuation Processes in the Carnoulès Acid Mine Drainage. Frontiers in Cell and Developmental Biology, 2016, 4, 3.	1.8	15
5	Arsenite response in <i>Coccomyxa</i> sp. Carn explored by transcriptomic and nonâ€ŧargeted metabolomic approaches. Environmental Microbiology, 2016, 18, 1289-1300.	1.8	20
6	Comparative proteomics of Acidithiobacillus ferrooxidans grown in the presence and absence of uranium. Research in Microbiology, 2016, 167, 234-239.	1.0	32
7	Thiomonas sp. CB2 is able to degrade urea and promote toxic metal precipitation in acid mine drainage waters supplemented with urea. Frontiers in Microbiology, 2015, 6, 993.	1.5	10
8	Constitutive arsenite oxidase expression detected in arsenic-hypertolerant Pseudomonas xanthomarina S11. Research in Microbiology, 2015, 166, 205-214.	1.0	31
9	Proteomic tools to decipher microbial community structure and functioning. Environmental Science and Pollution Research, 2015, 22, 13599-13612.	2.7	27
10	Toxic metal resistance in biofilms: diversity of microbial responses and their evolution. Research in Microbiology, 2015, 166, 764-773.	1.0	85
11	Environmental microbiology as a mosaic of explored ecosystems and issues. Environmental Science and Pollution Research, 2015, 22, 13577-13598.	2.7	10
12	Arsenic hypertolerance in the protist <i>Euglena mutabilis</i> is mediated by specific transporters and functional integrity maintenance mechanisms. Environmental Microbiology, 2015, 17, 1941-1949.	1.8	12
13	Adaptation in Toxic Environments: Arsenic Genomic Islands in the Bacterial Genus Thiomonas. PLoS ONE, 2015, 10, e0139011.	1.1	24
14	Rapid Impact of Phenanthrene and Arsenic on Bacterial Community Structure and Activities in Sand Batches. Microbial Ecology, 2014, 67, 129-144.	1.4	16
15	Differential expression of Ixodes ricinus salivary gland proteins in the presence of the Borrelia burgdorferi sensu lato complex. Journal of Proteomics, 2014, 96, 29-43.	1.2	42
16	An Improved Stable Isotope N-Terminal Labeling Approach with Light/Heavy TMPP To Automate Proteogenomics Data Validation: dN-TOP. Journal of Proteome Research, 2013, 12, 3063-3070.	1.8	45
17	Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Applied Microbiology and Biotechnology, 2013, 97, 3827-3841.	1.7	161
18	Life in an Arsenic-Containing Gold Mine: Genome and Physiology of the Autotrophic Arsenite-Oxidizing Bacterium Rhizobium sp. NT-26. Genome Biology and Evolution, 2013, 5, 934-953.	1.1	60

#	Article	IF	CITATIONS
19	Proteomics as a Tool for the Characterization of Microbial Isolates and Complex Communities. , 2012, , .		3
20	<i>In situ</i> proteo-metabolomics reveals metabolite secretion by the acid mine drainage bio-indicator, <i>Euglena mutabilis</i> . ISME Journal, 2012, 6, 1391-1402.	4.4	37
21	Surface properties and intracellular speciation revealed an original adaptive mechanism to arsenic in the acid mine drainage bio-indicator Euglena mutabilis. Applied Microbiology and Biotechnology, 2012, 93, 1735-1744.	1.7	26
22	Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Research in Microbiology, 2011, 162, 877-887.	1.0	51
23	Metabolic diversity among main microorganisms inside an arsenic-rich ecosystem revealed by meta- and proteo-genomics. ISME Journal, 2011, 5, 1735-1747.	4.4	186
24	Characterization of the Active Bacterial Community Involved in Natural Attenuation Processes in Arsenic-Rich Creek Sediments. Microbial Ecology, 2011, 61, 793-810.	1.4	67
25	Unsuspected Diversity of Arsenite-Oxidizing Bacteria as Revealed by Widespread Distribution of the <i>aoxB</i> Gene in Prokaryotes. Applied and Environmental Microbiology, 2011, 77, 4685-4692.	1.4	84
26	Temporal transcriptomic response during arsenic stress in Herminiimonas arsenicoxydans. BMC Genomics, 2010, 11, 709.	1.2	90
27	Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiology, 2010, 10, 53.	1.3	73
28	Structure, Function, and Evolution of the Thiomonas spp. Genome. PLoS Genetics, 2010, 6, e1000859.	1.5	123
29	Carbon and arsenic metabolism in Thiomonas strains: differences revealed diverse adaptation processes. BMC Microbiology, 2009, 9, 127.	1.3	69
30	Enhanced structural and functional genome elucidation of the arsenite-oxidizing strain Herminiimonas arsenicoxydans by proteomics data. Biochimie, 2009, 91, 192-203.	1.3	75
31	Molecular Basis for Regulation of the Heat Shock Transcription Factor I_f 32 by the DnaK and DnaJ Chaperones. Molecular Cell, 2008, 32, 347-358.	4.5	151
32	Lactobacillus plantarum response to inorganic carbon concentrations: PyrR2-dependent and -independent transcription regulation of genes involved in arginine and nucleotide metabolism. Microbiology (United Kingdom), 2008, 154, 2629-2640.	0.7	8
33	Low Carbamoyl Phosphate Pools May Drive <i>Lactobacillus plantarum</i> CO ₂ -Dependent Growth Phenotype. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 22-30.	1.0	6
34	A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics, 2007, 3, e53.	1.5	166
35	Expression of the pyr Operon of Lactobacillus plantarum Is Regulated by Inorganic Carbon Availability through a Second Regulator, PyrR 2 , Homologous to the Pyrimidine-Dependent Regulator PyrR 1. Journal of Bacteriology, 2006, 188, 8607-8616.	1.0	15
36	Uracil Salvage Pathway in Lactobacillus plantarum : Transcription and Genetic Studies. Journal of Bacteriology, 2006, 188, 4777-4786.	1.0	16

FLORENCE ARSÃ[®]NE-PLOETZE

#	Article	IF	CITATIONS
37	Lactobacillus plantarum ccl gene is non-essential, arginine-repressed and codes for a conserved protein in Firmicutes. Archives of Microbiology, 2005, 183, 307-316.	1.0	4
38	Repression of the pyr Operon in Lactobacillus plantarum Prevents Its Ability To Grow at Low Carbon Dioxide Levels. Journal of Bacteriology, 2005, 187, 2093-2104.	1.0	21
39	Two Arginine Repressors Regulate Arginine Biosynthesis in Lactobacillus plantarum. Journal of Bacteriology, 2004, 186, 6059-6069.	1.0	22
40	Recherche d'orthologues d'ArgR/AhrC dans le génome de bactéries à Gram positif : mise en évidence de groupes de synténie. Sciences Des Aliments, 2002, 22, 133-142.	0.2	1
41	The C Terminus of Ï, 32 Is Not Essential for Degradation by FtsH. Journal of Bacteriology, 2001, 183, 5911-5917.	1.0	34
42	The heat shock response of Escherichia coli. International Journal of Food Microbiology, 2000, 55, 3-9.	2.1	437
43	Control of Azospirillum brasilense NifA activity by PII: effect of replacing Tyr residues of the NifA N-terminal domain on NifA activity. FEMS Microbiology Letters, 1999, 179, 339-343.	0.7	21
44	Role of Region C in Regulation of the Heat Shock Gene-Specific Sigma Factor of <i>Escherichia coli</i> , Ï, ³² . Journal of Bacteriology, 1999, 181, 3552-3561.	1.0	45
45	Regulation of nif gene expression and nitrogen metabolism in Azospirillum. Soil Biology and Biochemistry, 1997, 29, 847-852.	4.2	19
46	Modulation of NifA activity by PII in Azospirillum brasilense: evidence for a regulatory role of the NifA N-terminal domain. Journal of Bacteriology, 1996, 178, 4830-4838.	1.0	134
47	Use of <i>lacZ</i> Fusions to Study the Expression of <i>nif</i> Genes of <i>Azospirillum brasilense</i> in Association with Plants. Molecular Plant-Microbe Interactions, 1994, 7, 748.	1.4	63
48	Characterization of the ntrBC genes of Azospirillam brasilense Sp7: Their involvement in the regulation of nitrogenase synthesis and activity. Molecular Genetics and Genomics, 1993, 240, 188-196.	2.4	55