Laura Kovacs

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6367028/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automated Generation of Exam Sheets for Automated Deduction. Lecture Notes in Computer Science, 2021, , 185-196.	1.0	1
2	Summing up Smart Transitions. Lecture Notes in Computer Science, 2021, , 317-340.	1.0	3
3	Automated Termination Analysis of Polynomial Probabilistic Programs. Lecture Notes in Computer Science, 2021, , 491-518.	1.0	14
4	Integer Induction in Saturation. Lecture Notes in Computer Science, 2021, , 361-377.	1.0	4
5	Algebra-Based Synthesis of Loops and Their Invariants (Invited Paper). Lecture Notes in Computer Science, 2021, , 17-28.	1.0	3
6	The Probabilistic Termination Tool Amber. Lecture Notes in Computer Science, 2021, , 667-675.	1.0	4
7	Subsumption Demodulation in First-Order Theorem Proving. Lecture Notes in Computer Science, 2020, , 297-315.	1.0	7
8	Induction with Generalization in Superposition Reasoning. Lecture Notes in Computer Science, 2020, , 123-137.	1.0	11
9	Algebra-Based Loop Synthesis. Lecture Notes in Computer Science, 2020, , 440-459.	1.0	2
10	Analysis of Bayesian Networks via Prob-Solvable Loops. Lecture Notes in Computer Science, 2020, , 221-241.	1.0	9
11	Mora - Automatic Generation of Moment-Based Invariants. Lecture Notes in Computer Science, 2020, , 492-498.	1.0	12
12	Formalizing Graph Trail Properties in Isabelle/HOL. Lecture Notes in Computer Science, 2020, , 190-205.	1.0	0
13	Verifying Relational Properties using Trace Logic. , 2019, , .		8
14	Portfolio SAT and SMT Solving of Cardinality Constraints in Sensor Network Optimization. , 2019, , .		2
15	Superposition Reasoning about Quantified Bitvector Formulas. , 2019, , .		0
16	Automatic Generation of Moment-Based Invariants for Prob-Solvable Loops. Lecture Notes in Computer Science, 2019, , 255-276.	1.0	21
17	Interactive Visualization of Saturation Attempts in Vampire. Lecture Notes in Computer Science, 2019, , 504-513.	1.0	3
18	Invariant Generation for Multi-Path Loops with Polynomial Assignments. Lecture Notes in Computer Science, 2018, , 226-246.	1.0	26

#	Article	IF	CITATIONS
19	Aligator.jl – A Julia Package for Loop Invariant Generation. Lecture Notes in Computer Science, 2018, , 111-117.	1.0	6
20	A FOOLish Encoding of the Next State Relations of Imperative Programs. Lecture Notes in Computer Science, 2018, , 405-421.	1.0	4
21	Coming to terms with quantified reasoning. , 2017, , .		21
22	Replacing conjectures by positive knowledge: Inferring proven precise worst-case execution time bounds using symbolic execution. Journal of Symbolic Computation, 2017, 80, 101-124.	0.5	2
23	Automated Generation of Non-Linear Loop Invariants Utilizing Hypergeometric Sequences. , 2017, , .		20
24	A Supervisory Control Algorithm Based on Property-Directed Reachability. Lecture Notes in Computer Science, 2017, , 115-130.	1.0	2
25	Coming to terms with quantified reasoning. ACM SIGPLAN Notices, 2017, 52, 260-270.	0.2	9
26	Splitting Proofs for Interpolation. Lecture Notes in Computer Science, 2017, , 291-309.	1.0	1
27	Symbolic Computation and Automated Reasoning for Program Analysis. Lecture Notes in Computer Science, 2016, , 20-27.	1.0	6
28	The vampire and the FOOL. , 2016, , .		13
29	A First Class Boolean Sort in First-Order Theorem Proving and TPTP. Lecture Notes in Computer Science, 2015, , 71-86.	1.0	7
30	Segment Abstraction for Worst-Case Execution Time Analysis. Lecture Notes in Computer Science, 2015, , 105-131.	1.0	5
31	Reasoning About Loops Using Vampire in KeY. Lecture Notes in Computer Science, 2015, , 434-443.	1.0	1
32	Lingva: Generating and Proving Program Properties Using Symbol Elimination. Lecture Notes in Computer Science, 2015, , 67-75.	1.0	2
33	Extensional Crisis and Proving Identity. Lecture Notes in Computer Science, 2014, , 185-200.	1.0	7
34	ExperimentingÂwithÂSATÂSolversÂinÂVampire. Lecture Notes in Computer Science, 2014, , 431-442.	1.0	3
35	Supervisory Control of Discrete-Event Systems via IC3. Lecture Notes in Computer Science, 2014, , 252-266.	1.0	10
36	First-Order Theorem Proving and Vampire. Lecture Notes in Computer Science, 2013, , 1-35.	1.0	229

#	Article	IF	CITATIONS
37	Special issue on Automated Specification and Verification of Web Systems. The Journal of Logic and Algebraic Programming, 2013, 82, 241-242.	1.4	0
38	Bound Propagation for Arithmetic Reasoning in Vampire. , 2013, , .		2
39	WCET squeezing. , 2013, , .		23
40	SmacC: A Retargetable Symbolic Execution Engine. Lecture Notes in Computer Science, 2013, , 482-486.	1.0	1
41	A Parametric Interpolation Framework for First-Order Theories. Lecture Notes in Computer Science, 2013, , 24-40.	1.0	1
42	The Inverse Method for Many-Valued Logics. Lecture Notes in Computer Science, 2013, , 12-23.	1.0	2
43	Playing in the grey area of proofs. , 2012, , .		13
44	Solving Robust Glucose-Insulin Control by Dixon Resultant Computations. , 2012, , .		2
45	Playing in the grey area of proofs. ACM SIGPLAN Notices, 2012, 47, 259-272.	0.2	11
46	r-TuBound: Loop Bounds for WCET Analysis (Tool Paper). Lecture Notes in Computer Science, 2012, , 435-444.	1.0	13
47	Symbolic Loop Bound Computation for WCET Analysis. Lecture Notes in Computer Science, 2012, , 227-242.	1.0	28
48	Vinter: A Vampire-Based Tool for Interpolation. Lecture Notes in Computer Science, 2012, , 148-156.	1.0	4
49	Invariant Generation in Vampire. Lecture Notes in Computer Science, 2011, , 60-64.	1.0	19
50	Case Studies on Invariant Generation Using a Saturation Theorem Prover. Lecture Notes in Computer Science, 2011, , 1-15.	1.0	7
51	Invariant and Type Inference for Matrices. Lecture Notes in Computer Science, 2010, , 163-179.	1.0	9
52	A Complete Invariant Generation Approach for P-solvable Loops. Lecture Notes in Computer Science, 2010, , 242-256.	1.0	14
53	Interpolation and Symbol Elimination in Vampire. Lecture Notes in Computer Science, 2010, , 188-195.	1.0	34
54	Aligators for Arrays (Tool Paper). Lecture Notes in Computer Science, 2010, , 348-356.	1.0	8

#	Article	IF	CITATIONS
55	ABC: Algebraic Bound Computation for Loops. Lecture Notes in Computer Science, 2010, , 103-118.	1.0	30
56	Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. , 2009, , .		15
57	Finding Loop Invariants for Programs over Arrays Using a Theorem Prover. Lecture Notes in Computer Science, 2009, , 470-485.	1.0	91
58	Interpolation and Symbol Elimination. Lecture Notes in Computer Science, 2009, , 199-213.	1.0	39
59	Aligator: A Mathematica Package for Invariant Generation (System Description). Lecture Notes in Computer Science, 2008, , 275-282.	1.0	12
60	Reasoning Algebraically About P-Solvable Loops. , 2008, , 249-264.		48
61	Invariant Generation for P-Solvable Loops with Assignments. , 2008, , 349-359.		5
62	Theorema: Towards computer-aided mathematical theory exploration. Journal of Applied Logic, 2006, 4, 470-504.	1.1	94
63	Combining Logic and Algebraic Techniques for Program Verification in Theorema. , 2006, , .		12
64	Automating Induction by Reflection. Electronic Proceedings in Theoretical Computer Science, EPTCS, 0, 337, 39-54.	0.8	1
65	Algebra-Based Reasoning for Loop Synthesis. Formal Aspects of Computing, 0, , .	1.4	2
66	Loop Analysis by Quantification over Iterations 0		9

66 Loop Analysis by Quantification over Iterations. , 0, , .

2