Yong-Guo Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366906/publications.pdf

Version: 2024-02-01

331670 526287 1,708 27 21 27 citations h-index g-index papers 30 30 30 2254 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intestinal epithelial vitamin D receptor deletion leads to defective autophagy in colitis. Gut, 2015, 64, 1082-1094.	12.1	279
2	<i>Salmonella</i> -infected crypt-derived intestinal organoid culture system for host-bacterial interactions. Physiological Reports, 2014, 2, e12147.	1.7	181
3	Vitamin D, vitamin D receptor and tissue barriers. Tissue Barriers, 2013, 1, e23118.	3.2	108
4	Tight junction CLDN2 gene is a direct target of the vitamin D receptor. Scientific Reports, 2015, 5, 10642.	3.3	94
5	Vitamin D receptor pathway is required for probiotic protection in colitis. American Journal of Physiology - Renal Physiology, 2015, 309, G341-G349.	3.4	91
6	Chronic Effects of a Salmonella Type III Secretion Effector Protein AvrA In Vivo. PLoS ONE, 2010, 5, e10505.	2.5	73
7	Salmonella Protein AvrA Activates the STAT3 Signaling Pathway in Colon Cancer. Neoplasia, 2016, 18, 307-316.	5.3	73
8	STAT3 activation in infection and infection-associated cancer. Molecular and Cellular Endocrinology, 2017, 451, 80-87.	3.2	69
9	Paneth Cell Alertness to Pathogens Maintained by Vitamin D Receptors. Gastroenterology, 2021, 160, 1269-1283.	1.3	69
10	Vitamin D Receptor Deletion Leads to the Destruction of Tight and Adherens Junctions in Lungs. Tissue Barriers, 2018, 6, 1-13.	3.2	64
11	Intestinal epithelial HMGB1 inhibits bacterial infection via STAT3 regulation of autophagy. Autophagy, 2019, 15, 1935-1953.	9.1	63
12	Salmonella Infection Upregulates the Leaky Protein Claudin-2 in Intestinal Epithelial Cells. PLoS ONE, 2013, 8, e58606.	2.5	62
13	Imbalance of autophagy and apoptosis in intestinal epithelium lacking the vitamin D receptor. FASEB Journal, 2019, 33, 11845-11856.	0.5	57
14	Presence of <i>Salmonella</i> AvrA in colorectal tumor and its precursor lesions in mouse intestine and human specimens. Oncotarget, 2017, 8, 55104-55115.	1.8	55
15	Vitamin D Receptor Protects Against Dysbiosis and Tumorigenesis via the JAK/STAT Pathway in Intestine. Cellular and Molecular Gastroenterology and Hepatology, 2020, 10, 729-746.	4.5	52
16	Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. Journal of Biological Chemistry, 2016, 291, 26837-26849.	3.4	45
17	Novel Regulatory Roles of Wnt1 in Infection-Associated Colorectal Cancer. Neoplasia, 2018, 20, 499-509.	5.3	39
18	Lack of Vitamin D Receptor Leads to Hyperfunction of Claudin-2 in Intestinal Inflammatory Responses. Inflammatory Bowel Diseases, 2018, 25, 97-110.	1.9	39

#	Article	IF	CITATION
19	Pulmonary Permeability Assessed by Fluorescent-Labeled Dextran Instilled Intranasally into Mice with LPS-Induced Acute Lung Injury. PLoS ONE, 2014, 9, e101925.	2.5	37
20	Lactic Acid Bacteria Isolated From Korean Kimchi Activate the Vitamin D Receptor–autophagy Signaling Pathways. Inflammatory Bowel Diseases, 2020, 26, 1199-1211.	1.9	33
21	Rebooting the microbiome. Gut Microbes, 2016, 7, 353-363.	9.8	24
22	Salmonella Enteritidis Effector AvrA Suppresses Autophagy by Reducing Beclin-1 Protein. Frontiers in Immunology, 2020, 11, 686.	4.8	23
23	Vitamin D receptor is a novel transcriptional regulator for Axin1. Journal of Steroid Biochemistry and Molecular Biology, 2017, 165, 430-437.	2.5	20
24	Vitamin D Receptor Influences Intestinal Barriers in Health and Disease. Cells, 2022, 11, 1129.	4.1	19
25	Infection with enteric pathogensSalmonella typhimurium and Citrobacter rodentiummodulate TGF-beta/Smad signaling pathways in the intestine. Gut Microbes, 2018, 9, 1-12.	9.8	16
26	Study Bacteria–Host Interactions Using Intestinal Organoids. Methods in Molecular Biology, 2016, 1576, 249-254.	0.9	12
27	A simple and sensitive method to detect vitamin D receptor expression in various disease models using stool samples. Genes and Diseases, 2021, 8, 939-945.	3.4	4