
Knut Stieger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6366675/publications.pdf Version: 2024-02-01

KNUT STIECED

#	Article	IF	CITATIONS
1	Restoration of vision in RPE65-deficient Briard dogs using an AAV serotype 4 vector that specifically targets the retinal pigmented epithelium. Gene Therapy, 2007, 14, 292-303.	2.3	182
2	Optimizing the DNA Donor Template for Homology-Directed Repair of Double-Strand Breaks. Molecular Therapy - Nucleic Acids, 2017, 7, 53-60.	2.3	109
3	In vivo gene regulation using tetracycline-regulatable systems. Advanced Drug Delivery Reviews, 2009, 61, 527-541.	6.6	108
4	Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Molecular Therapy, 2006, 13, 967-975.	3.7	95
5	The pros and cons of vertebrate animal models for functional and therapeutic research on inherited retinal dystrophies. Progress in Retinal and Eye Research, 2015, 48, 137-159.	7.3	81
6	The Natural History of Inherited Retinal Dystrophy Due to Biallelic Mutations in the RPE65 Gene. American Journal of Ophthalmology, 2019, 199, 58-70.	1.7	77
7	Detection of Intact rAAV Particles up to 6 Years After Successful Gene Transfer in the Retina of Dogs and Primates. Molecular Therapy, 2009, 17, 516-523.	3.7	73
8	Subretinal Delivery of Recombinant AAV Serotype 8 Vector in Dogs Results in Gene Transfer to Neurons in the Brain. Molecular Therapy, 2008, 16, 916-923.	3.7	70
9	RETINAL VASCULAR DEVELOPMENT WITH 0.312 MG INTRAVITREAL BEVACIZUMAB TO TREAT SEVERE POSTERIOR RETINOPATHY OF PREMATURITY. Retina, 2017, 37, 97-111.	1.0	62
10	InÂvivo genome editing as a potential treatment strategy for inherited retinal dystrophies. Progress in Retinal and Eye Research, 2017, 56, 1-18.	7.3	62
11	Comparison of various canine blood-typing methods. American Journal of Veterinary Research, 2005, 66, 1386-1392.	0.3	54
12	Comparison of various blood-typing methods for the feline AB blood group system. American Journal of Veterinary Research, 2005, 66, 1393-1399.	0.3	53
13	Chromatic Pupillometry Dissects Function of the Three Different Light-Sensitive Retinal Cell Populations in RPE65 Deficiency. , 2012, 53, 5641.		50
14	OCT-Based Macular Structure–Function Correlation in Dependence on Birth Weight and Gestational Age—the Giessen Long-Term ROP Study. , 2016, 57, OCT235.		48
15	Immune Responses to Gene Product of Inducible Promoters. Current Gene Therapy, 2007, 7, 334-346.	0.9	41
16	RPGR: Role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genetics, 2011, 32, 1-11.	0.5	38
17	Transgene Regulation Using the Tetracycline-Inducible TetR-KRAB System after AAV-Mediated Gene Transfer in Rodents and Nonhuman Primates. PLoS ONE, 2014, 9, e102538.	1.1	38
18	Organotypic Cultures of Adult Mouse Retina: Morphologic Changes and Gene Expression. , 2017, 58, 1930.		34

KNUT STIEGER

#	Article	IF	CITATIONS
19	Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases. Gene Therapy, 2007, 14, 1668-1673.	2.3	33
20	Automated segmentation of retinal blood vessels in spectral domain optical coherence tomography scans. Biomedical Optics Express, 2012, 3, 1478.	1.5	32
21	Optical Coherence Tomography (OCT) Device Independent Intraretinal Layer Segmentation. Translational Vision Science and Technology, 2014, 3, 1.	1.1	32
22	Adeno-Associated Virus Mediated Gene Therapy for Retinal Degenerative Diseases. Methods in Molecular Biology, 2012, 807, 179-218.	0.4	31
23	OCT Angiography in Young Children with a History of Retinopathy of Prematurity. Ophthalmology Retina, 2018, 2, 972-978.	1.2	30
24	Automated Segmentation of Pathological Cavities in Optical Coherence Tomography Scans. , 2013, 54, 4385.		29
25	AAV-Mediated Gene Therapy for Retinal Disorders in Large Animal Models. ILAR Journal, 2009, 50, 206-224.	1.8	28
26	Gene therapy for vision loss recent developments. Discovery Medicine, 2010, 10, 425-33.	0.5	22
27	Evaluation of tolerance to lentiviral LV-RPE65 gene therapy vector after subretinal delivery in non-human primates. Translational Research, 2017, 188, 40-57.e4.	2.2	21
28	Trifocal diffractive intraocular lens implantation in patients after previous corneal refractive laser surgery for myopia. BMC Ophthalmology, 2020, 20, 293.	0.6	18
29	Variation in primary sequence and tandem repeat copy number among i-antigens of Ichthyophthirius multifiliisâ~†. Molecular and Biochemical Parasitology, 2002, 120, 93-106.	0.5	17
30	Quantification of the vascular endothelial growth factor with a bioluminescence resonance energy transfer (BRET) based single molecule biosensor. Biosensors and Bioelectronics, 2016, 86, 609-615.	5.3	17
31	Development of a Reporter System to Explore MMEJ in the Context of Replacing Large Genomic Fragments. Molecular Therapy - Nucleic Acids, 2018, 11, 407-415.	2.3	13
32	Retinal Vessel Pathologies in a Rat Model of Periventricular Leukomalacia: A New Model for Retinopathy of Prematurity?. , 2015, 56, 1830.		12
33	Shared Decision-Making, Control Preferences and Psychological Well-Being in Patients with RPE65 Deficiency Awaiting Experimental Gene Therapy. Ophthalmic Research, 2015, 54, 96-102.	1.0	12
34	Choroidal Thickness with Swept-Source Optical Coherence Tomography versus Foveal Morphology in Young Children with a History of Prematurity. Ophthalmic Research, 2018, 60, 205-213.	1.0	12
35	Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in Vivo Genome Editing. International Journal of Molecular Sciences, 2020, 21, 1380.	1.8	11
36	Retinal Blinding Disorders and Gene Therapy - Molecular and Clinical Aspects. Current Gene Therapy, 2010, 10, 350-370.	0.9	11

KNUT STIEGER

#	Article	IF	CITATIONS
37	Detection of DNA Double Strand Breaks by γH2AX Does Not Result in 53bp1 Recruitment in Mouse Retinal Tissues. Frontiers in Neuroscience, 2018, 12, 286.	1.4	10
38	The Major Ciliary Isoforms of RPGR Build Different Interaction Complexes with INPP5E and RPGRIP1L. International Journal of Molecular Sciences, 2021, 22, 3583.	1.8	10
39	Preclinical Studies on Specific Gene Therapy for Recessive Retinal Degenerative Diseases. Current Gene Therapy, 2010, 10, 389-403.	0.9	10
40	Fundus-controlled two-color dark adaptometry with the Microperimeter MP1. Graefe's Archive for Clinical and Experimental Ophthalmology, 2015, 253, 965-972.	1.0	9
41	Correlation of central visual function and ROP risk factors in prematures with and without acute ROP at the age of 6–13 years: the Giessen long-term ROP study. British Journal of Ophthalmology, 2016, 100, 1238-1244.	2.1	9
42	Fundus-Controlled Dark Adaptometry in Young Children Without and With Spontaneously Regressed Retinopathy of Prematurity. Translational Vision Science and Technology, 2019, 8, 62.	1.1	8
43	Cone-Mediated Function Correlates to Altered Foveal Morphology in Preterm-Born Children at School Age. , 2019, 60, 1614.		8
44	Immuno-Histochemical Analysis of Rod and Cone Reaction to RPE65 Deficiency in the Inferior and Superior Canine Retina. PLoS ONE, 2014, 9, e86304.	1.1	7
45	Pupillary Light Reaction during High Altitude Exposure. PLoS ONE, 2014, 9, e87889.	1.1	7
46	Retinopathy of prematurity: recent developments in diagnosis and treatment. Expert Review of Ophthalmology, 2015, 10, 167-182.	0.3	7
47	Retinal tissue develops an inflammatory reaction to tobacco smoke and electronic cigarette vapor in mice. Journal of Molecular Medicine, 2021, 99, 1459-1469.	1.7	7
48	Detection of the Vascular Endothelial Growth Factor with a Novel Bioluminescence Resonance Energy Transfer Pair Using a Two-Component System. Sensors, 2017, 17, 145.	2.1	6
49	Toward genome editing in X-linked RP—development of a mouse model with specific treatment relevant features. Translational Research, 2019, 203, 57-72.	2.2	6
50	Subretinal Implantation of Human Primary RPE Cells Cultured on Nanofibrous Membranes in Minipigs. Biomedicines, 2022, 10, 669.	1.4	6
51	Functional Characterization of AAV-Expressed Recombinant Anti-VEGF Single-Chain Variable FragmentsIn Vitro. Journal of Ocular Pharmacology and Therapeutics, 2015, 31, 269-276.	0.6	5
52	Optimizing Measurement of Vascular Endothelial Growth Factor in Small Blood Samples of Premature Infants. Scientific Reports, 2019, 9, 6744.	1.6	4
53	Spatially Resolved Spectral Sensitivities as a Potential Read-out Parameter in Clinical Gene Therapeutic Trials. Ophthalmic Research, 2017, 58, 194-202.	1.0	3
54	Creation of different bioluminescence resonance energy transfer based biosensors with high affinity to VEGF. PLoS ONE, 2020, 15, e0230344.	1.1	3

KNUT STIEGER

#	Article	IF	CITATIONS
55	Combination of Inverted ILM Flap Technique and Subretinal Fluid Application Technique for Treatment of Chronic, Persistent and Large Macular Holes. Ophthalmology and Therapy, 2021, 10, 643-658.	1.0	3
56	Outer Plexiform Layer Structures Are Not Altered Following AAV-Mediated Gene Transfer in Healthy Rat Retina. Frontiers in Neurology, 2017, 8, 59.	1.1	2
57	tgAAG76, an adeno-associated virus delivered gene therapy for the potential treatment of vision loss caused by RPE65 gene abnormalities. Current Opinion in Molecular Therapeutics, 2010, 12, 471-7.	2.8	2
58	Characterization of Double-Strand Break Repair Protein Ku80 Location Within the Murine Retina. , 2022, 63, 22.		2
59	443. Successful Long-Term Doxycycline-Regulated Transgene Expression in the Retina of Nonhuman Primates Following Subretinal Injection of Recombinant AAV Vectors. Molecular Therapy, 2006, 13, S170.	3.7	1
60	Structure-Function Correlation in Hemianopic Vision Loss in Children Aged 3-6 Years Using OCT and SVOP, and Comparison with Adult Eyes. Ophthalmic Research, 2018, 60, 221-230.	1.0	1
61	Novel Needle for Intravitreal Drug Delivery: Comparative Study of Needle Tip Aspirates, Injection Stream and Penetration Forces. Clinical Ophthalmology, 2021, Volume 15, 723-734.	0.9	1
62	A Bioluminescence Resonance Energy Transfer–Based Reporter System: Characterization and Applications. CRISPR Journal, 2021, , .	1.4	1
63	Variation in primary sequence and tandem repeat copy number among i-antigens of Ichthyophthirius multifiliis[Mol. Biochem. Parasitol. 120 (2002) 93–106]. Molecular and Biochemical Parasitology, 2002, 122, 117.	0.5	0
64	Gene Switches for Pre-Clinical Studies in Gene Therapy. , 2010, , 163-180.		0
65	346. Targeting the RPGR Gene for Gene Therapy with Highly Specific Nucleases. Molecular Therapy, 2015, 23, S138.	3.7	0
66	137. Analysis of Cas9-FokI and TALE-MutH Endonuclease Activity and Toxicity as Key Elements in the Development of a Gene Therapeutic Approach to Treat XLRP. Molecular Therapy, 2016, 24, S56.	3.7	0
67	108â€Nanoparticle based CRSIPR/CAS gene editing system to treat huntington's disease. , 2018, , .		0
68	Retinal vessel pathologies in a rat model of periventricular leucomalazia. Acta Ophthalmologica, 2014, 92, 0-0.	0.6	0
69	RPE and Gene Therapy. , 2020, , 265-279.		0